Source code for botorch.posteriors.posterior

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Abstract base module for all botorch posteriors.
"""

from __future__ import annotations

from abc import ABC, abstractmethod, abstractproperty
from typing import Optional

import torch
from torch import Tensor


[docs]class Posterior(ABC): r"""Abstract base class for botorch posteriors.""" @property def base_sample_shape(self) -> torch.Size: r"""The shape of a base sample used for constructing posterior samples. This function may be overwritten by subclasses in case `base_sample_shape` and `event_shape` do not agree (e.g. if the posterior is a Multivariate Gaussian that is not full rank). """ return self.event_shape @abstractproperty def device(self) -> torch.device: r"""The torch device of the posterior.""" pass # pragma: no cover @abstractproperty def dtype(self) -> torch.dtype: r"""The torch dtype of the posterior.""" pass # pragma: no cover @abstractproperty def event_shape(self) -> torch.Size: r"""The event shape (i.e. the shape of a single sample).""" pass # pragma: no cover @property def mean(self) -> Tensor: r"""The mean of the posterior as a `(b) x n x m`-dim Tensor.""" raise NotImplementedError( f"Property `mean` not implemented for {self.__class__.__name__}" ) @property def variance(self) -> Tensor: r"""The variance of the posterior as a `(b) x n x m`-dim Tensor.""" raise NotImplementedError( f"Property `variance` not implemented for {self.__class__.__name__}" )
[docs] @abstractmethod def rsample( self, sample_shape: Optional[torch.Size] = None, base_samples: Optional[Tensor] = None, ) -> Tensor: r"""Sample from the posterior (with gradients). Args: sample_shape: A `torch.Size` object specifying the sample shape. To draw `n` samples, set to `torch.Size([n])`. To draw `b` batches of `n` samples each, set to `torch.Size([b, n])`. base_samples: An (optional) Tensor of `N(0, I)` base samples of appropriate dimension, typically obtained from a `Sampler`. This is used for deterministic optimization. Returns: A `sample_shape x event`-dim Tensor of samples from the posterior. """ pass # pragma: no cover
[docs] def sample( self, sample_shape: Optional[torch.Size] = None, base_samples: Optional[Tensor] = None, ) -> Tensor: r"""Sample from the posterior (without gradients). This is a simple wrapper calling `rsample` using `with torch.no_grad()`. Args: sample_shape: A `torch.Size` object specifying the sample shape. To draw `n` samples, set to `torch.Size([n])`. To draw `b` batches of `n` samples each, set to `torch.Size([b, n])`. base_samples: An (optional) Tensor of `N(0, I)` base samples of appropriate dimension, typically obtained from a `Sampler` object. This is used for deterministic optimization. Returns: A `sample_shape x event_shape`-dim Tensor of samples from the posterior. """ with torch.no_grad(): return self.rsample(sample_shape=sample_shape, base_samples=base_samples)
[docs]class PosteriorList(Posterior): r"""A Posterior represented by a list of independent Posteriors.""" def __init__(self, *posteriors: Posterior) -> None: r"""A Posterior represented by a list of independent Posteriors. Args: *posteriors: A variable number of single-outcome posteriors. Example: >>> p_1 = model_1.posterior(test_X) >>> p_2 = model_2.posterior(test_X) >>> p_12 = PosteriorList(p_1, p_2) Note: This is typically produced automatically in `ModelList`; it should generally not be necessary for the end user to invoke it manually. """ self.posteriors = list(posteriors) @property def base_sample_shape(self) -> torch.Size: r"""The shape of a base sample used for constructing posterior samples.""" base_sample_shapes = [ p.base_sample_shape for p in self.posteriors if p.base_sample_shape # ignore empty sample shapes ] batch_shapes = [bss[:-1] for bss in base_sample_shapes] if len(set(batch_shapes)) > 1: raise NotImplementedError( "`PosteriorList` only supported if the constituent posteriors " f"all have the same `batch_shape`. Batch shapes: {batch_shapes}." ) return batch_shapes[0] + torch.Size( [sum(bss[-1] for bss in base_sample_shapes)] ) @property def device(self) -> torch.device: r"""The torch device of the posterior.""" devices = {p.device for p in self.posteriors} if len(devices) > 1: raise NotImplementedError( # pragma: no cover "Multi-device posteriors are currently not supported. " "The devices of the constituent posteriors are: {devices}." ) return next(iter(devices)) @property def dtype(self) -> torch.dtype: r"""The torch dtype of the posterior.""" dtypes = {p.dtype for p in self.posteriors} if len(dtypes) > 1: raise NotImplementedError( "Multi-dtype posteriors are currently not supported. " "The dtypes of the constituent posteriors are: {dtypes}." ) return next(iter(dtypes)) @property def event_shape(self) -> torch.Size: r"""The event shape (i.e. the shape of a single sample).""" event_shapes = [p.event_shape for p in self.posteriors] batch_shapes = [es[:-1] for es in event_shapes] if len(set(batch_shapes)) > 1: raise NotImplementedError( "`PosteriorList` only supported if the constituent posteriors " f"all have the same `batch_shape`. Batch shapes: {batch_shapes}." ) return batch_shapes[0] + torch.Size([es[-1] for es in event_shapes]) @property def mean(self) -> Tensor: r"""The mean of the posterior as a `(b) x n x m`-dim Tensor.""" return torch.cat([p.mean for p in self.posteriors], dim=-1) @property def variance(self) -> Tensor: r"""The variance of the posterior as a `(b) x n x m`-dim Tensor.""" return torch.cat([p.variance for p in self.posteriors], dim=-1)
[docs] def rsample( self, sample_shape: Optional[torch.Size] = None, base_samples: Optional[Tensor] = None, ) -> Tensor: r"""Sample from the posterior (with gradients). Args: sample_shape: A `torch.Size` object specifying the sample shape. To draw `n` samples, set to `torch.Size([n])`. To draw `b` batches of `n` samples each, set to `torch.Size([b, n])`. base_samples: An (optional) Tensor of `N(0, I)` base samples of appropriate dimension, typically obtained from a `Sampler`. This is used for deterministic optimization. Returns: A `sample_shape x event`-dim Tensor of samples from the posterior. """ if base_samples is not None: split_sizes = [ p.base_sample_shape[-1] if p.base_sample_shape else 0 for p in self.posteriors ] base_sample_splits = torch.split(base_samples, split_sizes, dim=-1) base_sample_splits = [ bss if ss > 0 else None for ss, bss in zip(split_sizes, base_sample_splits) ] else: base_sample_splits = [None] * len(self.posteriors) samples = [ p.rsample(sample_shape=sample_shape, base_samples=bss) for p, bss in zip(self.posteriors, base_sample_splits) ] return torch.cat(samples, dim=-1)