botorch.test_functions

Abstract Test Function API

Base class for test functions for optimization benchmarks.

class botorch.test_functions.base.BaseTestProblem(noise_std=None, negate=False)[source]

Bases: torch.nn.modules.module.Module, abc.ABC

Base class for test functions.

Base constructor for test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
forward(X, noise=True)[source]

Evaluate the function on a set of points.

Parameters
  • X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the function.

  • noise (bool) – If True, add observation noise as specified by noise_std.

Returns

A batch_shape-dim tensor ouf function evaluations.

Return type

torch.Tensor

abstract evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

class botorch.test_functions.base.ConstrainedBaseTestProblem(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.BaseTestProblem, abc.ABC

Base class for test functions with constraints.

In addition to one or more objectives, a problem may have a number of outcome constraints of the form c_i(x) >= 0 for i=1, …, n_c.

This base class provides common functionality for such problems.

Base constructor for test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

num_constraints: int
evaluate_slack(X, noise=True)[source]

Evaluate the constraint slack on a set of points.

Constraints i is assumed to be feasible at x if the associated slack c_i(x) is positive. Zero slack means that the constraint is active. Negative slack means that the constraint is violated.

Parameters
  • X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

  • noise (bool) – If True, add observation noise to the slack as specified by noise_std.

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

is_feasible(X, noise=True)[source]

Evaluate whether the constraints are feasible on a set of points.

Parameters
  • X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraints.

  • noise (bool) – If True, add observation noise as specified by noise_std.

Returns

A batch_shape-dim boolean tensor that is True iff all constraint

slacks (potentially including observation noise) are positive.

Return type

torch.Tensor

abstract evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

class botorch.test_functions.base.MultiObjectiveTestProblem(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.BaseTestProblem

Base class for test multi-objective test functions.

TODO: add a pareto distance function that returns the distance between a provided point and the closest point on the true pareto front.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

num_objectives: int
property max_hv: float
gen_pareto_front(n)[source]

Generate n pareto optimal points.

Parameters

n (int) –

Return type

torch.Tensor

Synthetic Test Functions

Synthetic functions for optimization benchmarks. Reference: https://www.sfu.ca/~ssurjano/optimization.html

class botorch.test_functions.synthetic.SyntheticTestFunction(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.BaseTestProblem

Base class for synthetic test functions.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

num_objectives: int = 1
property optimal_value: float

The global minimum (maximum if negate=True) of the function.

class botorch.test_functions.synthetic.Ackley(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Ackley test function.

d-dimensional function (usually evaluated on [-32.768, 32.768]^d):

f(x) = -A exp(-B sqrt(1/d sum_{i=1}^d x_i^2)) -

exp(1/d sum_{i=1}^d cos(c x_i)) + A + exp(1)

f has one minimizer for its global minimum at z_1 = (0, 0, …, 0) with f(z_1) = 0.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

  • dim (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

class botorch.test_functions.synthetic.Beale(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Branin(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Branin test function.

Two-dimensional function (usually evaluated on [-5, 10] x [0, 15]):

B(x) = (x_2 - b x_1^2 + c x_1 - r)^2 + 10 (1-t) cos(x_1) + 10

Here b, c, r and t are constants where b = 5.1 / (4 * math.pi ** 2) c = 5 / math.pi, r = 6, t = 1 / (8 * math.pi) B has 3 minimizers for its global minimum at z_1 = (-pi, 12.275), z_2 = (pi, 2.275), z_3 = (9.42478, 2.475) with B(z_i) = 0.397887.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Bukin(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

class botorch.test_functions.synthetic.Cosine8(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Cosine Mixture test function.

8-dimensional function (usually evaluated on [-1, 1]^8):

f(x) = 0.1 sum_{i=1}^8 cos(5 pi x_i) - sum_{i=1}^8 x_i^2

f has one maximizer for its global maximum at z_1 = (0, 0, …, 0) with f(z_1) = 0.8

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 8
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.DropWave(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.DixonPrice(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.EggHolder(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Eggholder test function.

Two-dimensional function (usually evaluated on [-512, 512]^2):

E(x) = (x_2 + 47) sin(R1(x)) - x_1 * sin(R2(x))

where R1(x) = sqrt(|x_2 + x_1 / 2 + 47|), R2(x) = sqrt|x_1 - (x_2 + 47)|).

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

class botorch.test_functions.synthetic.Griewank(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Hartmann(dim=6, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Hartmann synthetic test function.

Most commonly used is the six-dimensional version (typically evaluated on [0, 1]^6):

H(x) = - sum_{i=1}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij)**2 )

H has a 6 local minima and a global minimum at

z = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)

with H(z) = -3.32237.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
property optimal_value: float

The global minimum (maximum if negate=True) of the function.

property optimizers: torch.Tensor
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.HolderTable(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Holder Table synthetic test function.

Two-dimensional function (typically evaluated on [0, 10] x [0, 10]):

H(x) = - | sin(x_1) * cos(x_2) * exp(| 1 - ||x|| / pi | ) |

H has 4 global minima with H(z_i) = -19.2085 at

z_1 = ( 8.05502, 9.66459) z_2 = (-8.05502, -9.66459) z_3 = (-8.05502, 9.66459) z_4 = ( 8.05502, -9.66459)

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Levy(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Levy synthetic test function.

d-dimensional function (usually evaluated on [-10, 10]^d):

f(x) = sin^2(pi w_1) +

sum_{i=1}^{d-1} (w_i-1)^2 (1 + 10 sin^2(pi w_i + 1)) + (w_d - 1)^2 (1 + sin^2(2 pi w_d))

where w_i = 1 + (x_i - 1) / 4 for all i.

f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_1) = 0.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Michalewicz(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Michalewicz synthetic test function.

d-dim function (usually evaluated on hypercube [0, pi]^d):

M(x) = sum_{i=1}^d sin(x_i) (sin(i x_i^2 / pi)^20)

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
property optimizers: torch.Tensor
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Powell(dim=4, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Rastrigin(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Rosenbrock(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Rosenbrock synthetic test function.

d-dimensional function (usually evaluated on [-5, 10]^d):

f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2)

f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_i) = 0.0.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.Shekel(m=10, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Shekel synthtetic test function.

4-dimensional function (usually evaluated on [0, 10]^4):

f(x) = -sum_{i=1}^10 (sum_{j=1}^4 (x_j - A_{ji})^2 + C_i)^{-1}

f has one minimizer for its global minimum at z_1 = (4, 4, 4, 4) with f(z_1) = -10.5363.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

  • m (int) –

Return type

None

dim: int = 4
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.SixHumpCamel(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.StyblinskiTang(dim=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Styblinski-Tang synthtetic test function.

d-dimensional function (usually evaluated on the hypercube [-5, 5]^d):

H(x) = 0.5 * sum_{i=1}^d (x_i^4 - 16 * x_i^2 + 5 * x_i)

H has a single global mininimum H(z) = -39.166166 * d at z = [-2.903534]^d

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.synthetic.ThreeHumpCamel(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool

Multi-Fidelity Synthetic Test Functions

Synthetic functions for multi-fidelity optimization benchmarks.

class botorch.test_functions.multi_fidelity.AugmentedBranin(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Augmented Branin test function for multi-fidelity optimization.

3-dimensional function with domain [-5, 10] x [0, 15] * [0,1], where the last dimension of is the fidelity parameter:

B(x) = (x_2 - (b - 0.1 * (1 - x_3))x_1^2 + c x_1 - r)^2 +

10 (1-t) cos(x_1) + 10

Here b, c, r and t are constants where b = 5.1 / (4 * math.pi ** 2) c = 5 / math.pi, r = 6, t = 1 / (8 * math.pi). B has infinitely many minimizers with x_1 = -pi, pi, 3pi and B_min = 0.397887

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 3
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_fidelity.AugmentedHartmann(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Augmented Hartmann synthetic test function.

7-dimensional function (typically evaluated on [0, 1]^7), where the last dimension is the fidelity parameter.

H(x) = -(ALPHA_1 - 0.1 * (1-x_7)) * exp(- sum_{j=1}^6 A_1j (x_j - P_1j) ** 2) -

sum_{i=2}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij) ** 2)

H has a unique global minimizer x = [0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573, 1.0]

with H_min = -3.32237

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int = 7
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_fidelity.AugmentedRosenbrock(dim=3, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.synthetic.SyntheticTestFunction

Augmented Rosenbrock synthetic test function for multi-fidelity optimization.

d-dimensional function (usually evaluated on [-5, 10]^(d-2) * [0, 1]^2), where the last two dimensions are the fidelity parameters:

f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2 + 0.1 * (1-x_{d-1}))^2 +

(x_i - 1 + 0.1 * (1 - x_d)^2)^2)

f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_i) = 0.0.

Base constructor for synthetic test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the function.

Return type

None

dim: int
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool

Multi-Objective Synthetic Test Functions

Multi-objective optimization benchmark problems.

References

Deb2005dtlz

K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, R. Goldberg. “Scalable test problems for evolutionary multi-objective optimization” in Evolutionary Multiobjective Optimization, London, U.K.: Springer-Verlag, pp. 105-145, 2005.

Deb2005robust(1,2)

K. Deb, H. Gupta. “Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization” in Evolutionary Multi-Criterion Optimization, Springer-Berlin, pp. 150-164, 2005.

GarridoMerchan2020(1,2,3)

E. C. Garrido-Merch ́an and D. Hern ́andez-Lobato. Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. arXiv e-prints, arXiv:2004.00601, Apr. 2020.

Gelbart2014

Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian optimization with unknown constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press, Arlington, Virginia, USA, 250–259.

Oszycka1995

A. Osyczka, S. Kundu. 1995. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. In Structural Optimization 10. 94–99.

Tanabe2020(1,2,3,4,5,6)

Ryoji Tanabe, Hisao Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing,Volume 89, 2020.

Yang2019a(1,2,3)

K. Yang, M. Emmerich, A. Deutz, and T. Bäck. 2019. “Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient” in Swarm and evolutionary computation 44, pp. 945–956, 2019.

Zitzler2000

E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000.

class botorch.test_functions.multi_objective.BraninCurrin(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem

Two objective problem composed of the Branin and Currin functions.

Branin (rescaled):

f(x) = ( 15*x_1 - 5.1 * (15 * x_0 - 5) ** 2 / (4 * pi ** 2) + 5 * (15 * x_0 - 5) / pi - 5 ) ** 2 + (10 - 10 / (8 * pi)) * cos(15 * x_0 - 5))

Currin:

f(x) = (1 - exp(-1 / (2 * x_1))) * ( 2300 * x_0 ** 3 + 1900 * x_0 ** 2 + 2092 * x_0 + 60 ) / 100 * x_0 ** 3 + 500 * x_0 ** 2 + 4 * x_0 + 20

Constructor for Branin-Currin.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 2
num_objectives: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.DH(dim, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, abc.ABC

Base class for DH problems for robust multi-objective optimization.

In their paper, [Deb2005robust] consider these problems under a mean-robustness setting, and use uniformly distributed input perturbations from the box with edge lengths delta_0 = delta, delta_i = 2 * delta, i > 0, with delta ranging up to 0.01 for DH1 and DH2, and delta = 0.03 for DH3 and DH4.

These are d-dimensional problems with two objectives:

f_0(x) = x_0 f_1(x) = h(x) + g(x) * S(x) for DH1 and DH2 f_1(x) = h(x) * (g(x) + S(x)) for DH3 and DH4

The goal is to minimize both objectives. See [Deb2005robust] for more details on DH. The reference points were set using infer_reference_point.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

Return type

None

num_objectives: int = 2
class botorch.test_functions.multi_objective.DH1(dim, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DH

DH1 test problem.

d-dimensional problem evaluated on [0, 1] x [-1, 1]^{d-1}:

f_0(x) = x_0 f_1(x) = h(x_0) + g(x) * S(x_0) h(x_0) = 1 - x_0^2 g(x) = sum_{i=1}^{d-1} (10 + x_i^2 - 10 * cos(4 * pi * x_i)) S(x_0) = alpha / (0.2 + x_0) + beta * x_0^2

where alpha = 1 and beta = 1.

The Pareto front corresponds to the equation f_1 = 1 - f_0^2, and it is found at x_i = 0 for i > 0 and any value of x_0 in (0, 1].

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

Return type

None

alpha = 1.0
beta = 1.0
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

dim: int
training: bool
class botorch.test_functions.multi_objective.DH2(dim, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DH1

DH2 test problem.

This is identical to DH1 except for having beta = 10.0.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

Return type

None

beta = 10.0
dim: int
training: bool
class botorch.test_functions.multi_objective.DH3(dim, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DH

DH3 test problem.

d-dimensional problem evaluated on [0, 1]^2 x [-1, 1]^{d-2}:

f_0(x) = x_0 f_1(x) = h(x_1) * (g(x) + S(x_0)) h(x_1) = 2 - 0.8 * exp(-((x_1 - 0.35) / 0.25)^2) - exp(-((x_1 - 0.85) / 0.03)^2) g(x) = sum_{i=2}^{d-1} (50 * x_i^2) S(x_0) = 1 - sqrt(x_0)

The Pareto front is found at x_i = 0 for i > 1. There’s a local and a global Pareto front, which are found at x_1 = 0.35 and x_1 = 0.85, respectively. The approximate relationships between the objectives at local and global Pareto fronts are given by f_1 = 1.2 (1 - sqrt(f_0)) and f_1 = 1 - f_0, respectively. The specific values on the Pareto fronts can be found by varying x_0.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

dim: int
training: bool
class botorch.test_functions.multi_objective.DH4(dim, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DH3

DH4 test problem.

This is similar to DH3 except that it is evaluated on [0, 1] x [-0.15, 1] x [-1, 1]^{d-2} and:

h(x_0, x_1) = 2 - x_0 - 0.8 * exp(-((x_0 + x_1 - 0.35) / 0.25)^2) - exp(-((x_0 + x_1 - 0.85) / 0.03)^2)

The Pareto front is found at x_i = 0 for i > 2, with the local one being near x_0 + x_1 = 0.35 and the global one near x_0 + x_1 = 0.85.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

Return type

None

dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem

Base class for DTLZ problems.

See [Deb2005dtlz] for more details on DTLZ.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ1(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ

DLTZ1 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = 0.5 * x_0 * (1 + g(x)) f_1(x) = 0.5 * (1 - x_0) * (1 + g(x)) g(x) = 100 * sum_{i=m}^{d-1} ( k + (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5)) )

where k = d - m + 1.

The pareto front is given by the line (or hyperplane) sum_i f_i(x) = 0.5. The goal is to minimize both objectives. The reference point comes from [Yang2019].

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

gen_pareto_front(n)[source]

Generate n pareto optimal points.

The pareto points randomly sampled from the hyperplane sum_i f(x_i) = 0.5.

Parameters

n (int) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ2(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ

DLTZ2 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = sum_{i=m}^{d-1} (x_i - 0.5)^2

The pareto front is given by the unit hypersphere sum{i} f_i^2 = 1. Note: the pareto front is completely concave. The goal is to minimize both objectives.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

gen_pareto_front(n)[source]

Generate n pareto optimal points.

The pareto points are randomly sampled from the hypersphere’s positive section.

Parameters

n (int) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ3(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ2

DTLZ3 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = 100 * [k + sum_{i=m}^{n-1} (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5))]

g(x) introduces (3k−1) local Pareto fronts that are parallel to the one global Pareto-optimal front.

The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ4(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ2

DTLZ4 test problem.

This is the same as DTLZ2, but with alpha=100 as the exponent, resulting in dense solutions near the f_M-f_1 plane.

The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ5(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ

DTLZ5 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = (1 + g(x)) * cos(theta_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(theta_0 * pi / 2) theta_i = pi / (4 * (1 + g(X_m)) * (1 + 2 * g(X_m) * x_i)) for i = 1, … , M-2 g(x) = sum_{i=m}^{d-1} (x_i - 0.5)^2

The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.DTLZ7(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ

DTLZ7 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = x_0 f_1(x) = x_1 … f_{M-1}(x) = (1 + g(X_m)) * h(f_0, f_1, …, f_{M-2}, g, x) h(f_0, f_1, …, f_{M-2}, g, x) = M - sum_{i=0}^{M-2} f_i(x)/(1+g(x)) * (1 + sin(3 * pi * f_i(x)))

This test problem has 2M-1 disconnected Pareto-optimal regions in the search space.

The pareto frontier corresponds to X_m = 0.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.VehicleSafety(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem

Optimize Vehicle crash-worthiness.

See [Tanabe2020] for details.

The reference point is 1.1 * the nadir point from approximate front provided by [Tanabe2020].

The maximum hypervolume is computed using the approximate pareto front from [Tanabe2020].

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 5
num_objectives: int = 3
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.ZDT(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem

Base class for ZDT problems.

See [Zitzler2000] for more details on ZDT.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.ZDT1(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.ZDT

ZDT1 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = x_0 f_1(x) = g(x) * (1 - sqrt(x_0 / g(x)) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i

The reference point comes from [Yang2019a].

The pareto front is convex.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

gen_pareto_front(n)[source]

Generate n pareto optimal points.

Parameters

n (int) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.ZDT2(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.ZDT

ZDT2 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = x_0 f_1(x) = g(x) * (1 - (x_0 / g(x))^2) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i

The reference point comes from [Yang2019a].

The pareto front is concave.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

gen_pareto_front(n)[source]

Generate n pareto optimal points.

Parameters

n (int) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.ZDT3(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.ZDT

ZDT3 test problem.

d-dimensional problem evaluated on [0, 1]^d:

f_0(x) = x_0 f_1(x) = 1 - sqrt(x_0 / g(x)) - x_0 / g * sin(10 * pi * x_0) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i

The reference point comes from [Yang2019a].

The pareto front consists of several discontinuous convex parts.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

gen_pareto_front(n)[source]

Generate n pareto optimal points.

Parameters

n (int) –

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.CarSideImpact(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem

Car side impact problem.

See [Tanabe2020] for details.

The reference point is nadir + 0.1 * (ideal - nadir) where the ideal and nadir points come from the approximate Pareto frontier from [Tanabe2020]. The max_hv was computed based on the approximate Pareto frontier from [Tanabe2020].

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

num_objectives: int = 4
dim: int = 7
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

class botorch.test_functions.multi_objective.BNH(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, botorch.test_functions.base.ConstrainedBaseTestProblem

The constrained BNH problem.

See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 2
num_objectives: int = 2
num_constraints: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.SRN(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, botorch.test_functions.base.ConstrainedBaseTestProblem

The constrained SRN problem.

See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 2
num_objectives: int = 2
num_constraints: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.CONSTR(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, botorch.test_functions.base.ConstrainedBaseTestProblem

The constrained CONSTR problem.

See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 2
num_objectives: int = 2
num_constraints: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.ConstrainedBraninCurrin(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.BraninCurrin, botorch.test_functions.base.ConstrainedBaseTestProblem

Constrained Branin Currin Function.

This uses the disk constraint from [Gelbart2014].

Constructor for Branin-Currin.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 2
num_objectives: int = 2
num_constraints: int = 1
evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.C2DTLZ2(dim, num_objectives=2, noise_std=None, negate=False)[source]

Bases: botorch.test_functions.multi_objective.DTLZ2, botorch.test_functions.base.ConstrainedBaseTestProblem

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

  • dim (int) –

  • num_objectives (int) –

Return type

None

num_constraints: int = 1
evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

num_objectives: int
dim: int
training: bool
class botorch.test_functions.multi_objective.OSY(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, botorch.test_functions.base.ConstrainedBaseTestProblem

The OSY test problem from [Oszycka1995]. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.py Note that this implementation assumes minimization, so please choose negate=True.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 6
num_constraints: int = 6
num_objectives: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool
class botorch.test_functions.multi_objective.WeldedBeam(noise_std=None, negate=False)[source]

Bases: botorch.test_functions.base.MultiObjectiveTestProblem, botorch.test_functions.base.ConstrainedBaseTestProblem

The Welded Beam test problem. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/welded_beam.py Note that this implementation assumes minimization, so please choose negate=True.

Base constructor for multi-objective test functions.

Parameters
  • noise_std (Optional[float]) – Standard deviation of the observation noise.

  • negate (bool) – If True, negate the objectives.

Return type

None

dim: int = 4
num_constraints: int = 4
num_objectives: int = 2
evaluate_true(X)[source]

Evaluate the function (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) –

Return type

torch.Tensor

evaluate_slack_true(X)[source]

Evaluate the constraint slack (w/o observation noise) on a set of points.

Parameters

X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).

Returns

A batch_shape x n_c-dim tensor of constraint slack (where positive slack

corresponds to the constraint being feasible).

Return type

torch.Tensor

training: bool