botorch.test_functions¶
Abstract Test Function API¶
Base class for test functions for optimization benchmarks.
- class botorch.test_functions.base.BaseTestProblem(noise_std=None, negate=False)[source]¶
Bases:
torch.nn.modules.module.Module
,abc.ABC
Base class for test functions.
Base constructor for test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- forward(X, noise=True)[source]¶
Evaluate the function on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the function.
noise (bool) – If True, add observation noise as specified by noise_std.
- Returns
A batch_shape-dim tensor ouf function evaluations.
- Return type
torch.Tensor
- class botorch.test_functions.base.ConstrainedBaseTestProblem(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.BaseTestProblem
,abc.ABC
Base class for test functions with constraints.
In addition to one or more objectives, a problem may have a number of outcome constraints of the form c_i(x) >= 0 for i=1, …, n_c.
This base class provides common functionality for such problems.
Base constructor for test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- num_constraints: int¶
- evaluate_slack(X, noise=True)[source]¶
Evaluate the constraint slack on a set of points.
Constraints i is assumed to be feasible at x if the associated slack c_i(x) is positive. Zero slack means that the constraint is active. Negative slack means that the constraint is violated.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
noise (bool) – If True, add observation noise to the slack as specified by noise_std.
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- is_feasible(X, noise=True)[source]¶
Evaluate whether the constraints are feasible on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraints.
noise (bool) – If True, add observation noise as specified by noise_std.
- Returns
- A batch_shape-dim boolean tensor that is True iff all constraint
slacks (potentially including observation noise) are positive.
- Return type
torch.Tensor
- abstract evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- class botorch.test_functions.base.MultiObjectiveTestProblem(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.BaseTestProblem
Base class for test multi-objective test functions.
TODO: add a pareto distance function that returns the distance between a provided point and the closest point on the true pareto front.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- num_objectives: int¶
- property max_hv: float¶
Synthetic Test Functions¶
Synthetic functions for optimization benchmarks. Reference: https://www.sfu.ca/~ssurjano/optimization.html
- class botorch.test_functions.synthetic.SyntheticTestFunction(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.BaseTestProblem
Base class for synthetic test functions.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- num_objectives: int = 1¶
- property optimal_value: float¶
The global minimum (maximum if negate=True) of the function.
- class botorch.test_functions.synthetic.Ackley(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Ackley test function.
d-dimensional function (usually evaluated on [-32.768, 32.768]^d):
- f(x) = -A exp(-B sqrt(1/d sum_{i=1}^d x_i^2)) -
exp(1/d sum_{i=1}^d cos(c x_i)) + A + exp(1)
f has one minimizer for its global minimum at z_1 = (0, 0, …, 0) with f(z_1) = 0.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
dim (int) –
- Return type
None
- class botorch.test_functions.synthetic.Beale(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Branin(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Branin test function.
Two-dimensional function (usually evaluated on [-5, 10] x [0, 15]):
B(x) = (x_2 - b x_1^2 + c x_1 - r)^2 + 10 (1-t) cos(x_1) + 10
Here b, c, r and t are constants where b = 5.1 / (4 * math.pi ** 2) c = 5 / math.pi, r = 6, t = 1 / (8 * math.pi) B has 3 minimizers for its global minimum at z_1 = (-pi, 12.275), z_2 = (pi, 2.275), z_3 = (9.42478, 2.475) with B(z_i) = 0.397887.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Bukin(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- class botorch.test_functions.synthetic.Cosine8(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Cosine Mixture test function.
8-dimensional function (usually evaluated on [-1, 1]^8):
f(x) = 0.1 sum_{i=1}^8 cos(5 pi x_i) - sum_{i=1}^8 x_i^2
f has one maximizer for its global maximum at z_1 = (0, 0, …, 0) with f(z_1) = 0.8
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 8¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.DropWave(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.DixonPrice(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.EggHolder(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Eggholder test function.
Two-dimensional function (usually evaluated on [-512, 512]^2):
E(x) = (x_2 + 47) sin(R1(x)) - x_1 * sin(R2(x))
where R1(x) = sqrt(|x_2 + x_1 / 2 + 47|), R2(x) = sqrt|x_1 - (x_2 + 47)|).
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- class botorch.test_functions.synthetic.Griewank(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Hartmann(dim=6, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Hartmann synthetic test function.
Most commonly used is the six-dimensional version (typically evaluated on [0, 1]^6):
H(x) = - sum_{i=1}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij)**2 )
H has a 6 local minima and a global minimum at
z = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)
with H(z) = -3.32237.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- property optimal_value: float¶
The global minimum (maximum if negate=True) of the function.
- property optimizers: torch.Tensor¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.HolderTable(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Holder Table synthetic test function.
Two-dimensional function (typically evaluated on [0, 10] x [0, 10]):
H(x) = - | sin(x_1) * cos(x_2) * exp(| 1 - ||x|| / pi | ) |
H has 4 global minima with H(z_i) = -19.2085 at
z_1 = ( 8.05502, 9.66459) z_2 = (-8.05502, -9.66459) z_3 = (-8.05502, 9.66459) z_4 = ( 8.05502, -9.66459)
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Levy(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Levy synthetic test function.
d-dimensional function (usually evaluated on [-10, 10]^d):
- f(x) = sin^2(pi w_1) +
sum_{i=1}^{d-1} (w_i-1)^2 (1 + 10 sin^2(pi w_i + 1)) + (w_d - 1)^2 (1 + sin^2(2 pi w_d))
where w_i = 1 + (x_i - 1) / 4 for all i.
f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_1) = 0.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Michalewicz(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Michalewicz synthetic test function.
d-dim function (usually evaluated on hypercube [0, pi]^d):
M(x) = sum_{i=1}^d sin(x_i) (sin(i x_i^2 / pi)^20)
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- property optimizers: torch.Tensor¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Powell(dim=4, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Rastrigin(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Rosenbrock(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Rosenbrock synthetic test function.
d-dimensional function (usually evaluated on [-5, 10]^d):
f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2)
f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_i) = 0.0.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.Shekel(m=10, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Shekel synthtetic test function.
4-dimensional function (usually evaluated on [0, 10]^4):
f(x) = -sum_{i=1}^10 (sum_{j=1}^4 (x_j - A_{ji})^2 + C_i)^{-1}
f has one minimizer for its global minimum at z_1 = (4, 4, 4, 4) with f(z_1) = -10.5363.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
m (int) –
- Return type
None
- dim: int = 4¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.SixHumpCamel(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.StyblinskiTang(dim=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Styblinski-Tang synthtetic test function.
d-dimensional function (usually evaluated on the hypercube [-5, 5]^d):
H(x) = 0.5 * sum_{i=1}^d (x_i^4 - 16 * x_i^2 + 5 * x_i)
H has a single global mininimum H(z) = -39.166166 * d at z = [-2.903534]^d
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.synthetic.ThreeHumpCamel(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
Multi-Fidelity Synthetic Test Functions¶
Synthetic functions for multi-fidelity optimization benchmarks.
- class botorch.test_functions.multi_fidelity.AugmentedBranin(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Augmented Branin test function for multi-fidelity optimization.
3-dimensional function with domain [-5, 10] x [0, 15] * [0,1], where the last dimension of is the fidelity parameter:
- B(x) = (x_2 - (b - 0.1 * (1 - x_3))x_1^2 + c x_1 - r)^2 +
10 (1-t) cos(x_1) + 10
Here b, c, r and t are constants where b = 5.1 / (4 * math.pi ** 2) c = 5 / math.pi, r = 6, t = 1 / (8 * math.pi). B has infinitely many minimizers with x_1 = -pi, pi, 3pi and B_min = 0.397887
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 3¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_fidelity.AugmentedHartmann(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Augmented Hartmann synthetic test function.
7-dimensional function (typically evaluated on [0, 1]^7), where the last dimension is the fidelity parameter.
- H(x) = -(ALPHA_1 - 0.1 * (1-x_7)) * exp(- sum_{j=1}^6 A_1j (x_j - P_1j) ** 2) -
sum_{i=2}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij) ** 2)
H has a unique global minimizer x = [0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573, 1.0]
with H_min = -3.32237
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int = 7¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_fidelity.AugmentedRosenbrock(dim=3, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.synthetic.SyntheticTestFunction
Augmented Rosenbrock synthetic test function for multi-fidelity optimization.
d-dimensional function (usually evaluated on [-5, 10]^(d-2) * [0, 1]^2), where the last two dimensions are the fidelity parameters:
- f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2 + 0.1 * (1-x_{d-1}))^2 +
(x_i - 1 + 0.1 * (1 - x_d)^2)^2)
f has one minimizer for its global minimum at z_1 = (1, 1, …, 1) with f(z_i) = 0.0.
Base constructor for synthetic test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the function.
- Return type
None
- dim: int¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
Multi-Objective Synthetic Test Functions¶
Multi-objective optimization benchmark problems.
References
- Deb2005dtlz
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, R. Goldberg. “Scalable test problems for evolutionary multi-objective optimization” in Evolutionary Multiobjective Optimization, London, U.K.: Springer-Verlag, pp. 105-145, 2005.
- Deb2005robust(1,2)
K. Deb, H. Gupta. “Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization” in Evolutionary Multi-Criterion Optimization, Springer-Berlin, pp. 150-164, 2005.
- GarridoMerchan2020(1,2,3)
E. C. Garrido-Merch ́an and D. Hern ́andez-Lobato. Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. arXiv e-prints, arXiv:2004.00601, Apr. 2020.
- Gelbart2014
Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian optimization with unknown constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press, Arlington, Virginia, USA, 250–259.
- Oszycka1995
A. Osyczka, S. Kundu. 1995. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. In Structural Optimization 10. 94–99.
- Tanabe2020(1,2,3,4,5,6)
Ryoji Tanabe, Hisao Ishibuchi, An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing,Volume 89, 2020.
- Yang2019a(1,2,3)
K. Yang, M. Emmerich, A. Deutz, and T. Bäck. 2019. “Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient” in Swarm and evolutionary computation 44, pp. 945–956, 2019.
- Zitzler2000
E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algorithms: Empirical results,” Evol. Comput., vol. 8, no. 2, pp. 173–195, 2000.
- class botorch.test_functions.multi_objective.BraninCurrin(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
Two objective problem composed of the Branin and Currin functions.
Branin (rescaled):
f(x) = ( 15*x_1 - 5.1 * (15 * x_0 - 5) ** 2 / (4 * pi ** 2) + 5 * (15 * x_0 - 5) / pi - 5 ) ** 2 + (10 - 10 / (8 * pi)) * cos(15 * x_0 - 5))
Currin:
f(x) = (1 - exp(-1 / (2 * x_1))) * ( 2300 * x_0 ** 3 + 1900 * x_0 ** 2 + 2092 * x_0 + 60 ) / 100 * x_0 ** 3 + 500 * x_0 ** 2 + 4 * x_0 + 20
Constructor for Branin-Currin.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 2¶
- num_objectives: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.DH(dim, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,abc.ABC
Base class for DH problems for robust multi-objective optimization.
In their paper, [Deb2005robust] consider these problems under a mean-robustness setting, and use uniformly distributed input perturbations from the box with edge lengths delta_0 = delta, delta_i = 2 * delta, i > 0, with delta ranging up to 0.01 for DH1 and DH2, and delta = 0.03 for DH3 and DH4.
These are d-dimensional problems with two objectives:
f_0(x) = x_0 f_1(x) = h(x) + g(x) * S(x) for DH1 and DH2 f_1(x) = h(x) * (g(x) + S(x)) for DH3 and DH4
The goal is to minimize both objectives. See [Deb2005robust] for more details on DH. The reference points were set using infer_reference_point.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
- Return type
None
- num_objectives: int = 2¶
- class botorch.test_functions.multi_objective.DH1(dim, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DH
DH1 test problem.
d-dimensional problem evaluated on [0, 1] x [-1, 1]^{d-1}:
f_0(x) = x_0 f_1(x) = h(x_0) + g(x) * S(x_0) h(x_0) = 1 - x_0^2 g(x) = sum_{i=1}^{d-1} (10 + x_i^2 - 10 * cos(4 * pi * x_i)) S(x_0) = alpha / (0.2 + x_0) + beta * x_0^2
where alpha = 1 and beta = 1.
The Pareto front corresponds to the equation f_1 = 1 - f_0^2, and it is found at x_i = 0 for i > 0 and any value of x_0 in (0, 1].
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
- Return type
None
- alpha = 1.0¶
- beta = 1.0¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DH2(dim, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DH1
DH2 test problem.
This is identical to DH1 except for having beta = 10.0.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
- Return type
None
- beta = 10.0¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DH3(dim, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DH
DH3 test problem.
d-dimensional problem evaluated on [0, 1]^2 x [-1, 1]^{d-2}:
f_0(x) = x_0 f_1(x) = h(x_1) * (g(x) + S(x_0)) h(x_1) = 2 - 0.8 * exp(-((x_1 - 0.35) / 0.25)^2) - exp(-((x_1 - 0.85) / 0.03)^2) g(x) = sum_{i=2}^{d-1} (50 * x_i^2) S(x_0) = 1 - sqrt(x_0)
The Pareto front is found at x_i = 0 for i > 1. There’s a local and a global Pareto front, which are found at x_1 = 0.35 and x_1 = 0.85, respectively. The approximate relationships between the objectives at local and global Pareto fronts are given by f_1 = 1.2 (1 - sqrt(f_0)) and f_1 = 1 - f_0, respectively. The specific values on the Pareto fronts can be found by varying x_0.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DH4(dim, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DH3
DH4 test problem.
This is similar to DH3 except that it is evaluated on [0, 1] x [-0.15, 1] x [-1, 1]^{d-2} and:
h(x_0, x_1) = 2 - x_0 - 0.8 * exp(-((x_0 + x_1 - 0.35) / 0.25)^2) - exp(-((x_0 + x_1 - 0.85) / 0.03)^2)
The Pareto front is found at x_i = 0 for i > 2, with the local one being near x_0 + x_1 = 0.35 and the global one near x_0 + x_1 = 0.85.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
- Return type
None
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
Base class for DTLZ problems.
See [Deb2005dtlz] for more details on DTLZ.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ1(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ
DLTZ1 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = 0.5 * x_0 * (1 + g(x)) f_1(x) = 0.5 * (1 - x_0) * (1 + g(x)) g(x) = 100 * sum_{i=m}^{d-1} ( k + (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5)) )
where k = d - m + 1.
The pareto front is given by the line (or hyperplane) sum_i f_i(x) = 0.5. The goal is to minimize both objectives. The reference point comes from [Yang2019].
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- gen_pareto_front(n)[source]¶
Generate n pareto optimal points.
The pareto points randomly sampled from the hyperplane sum_i f(x_i) = 0.5.
- Parameters
n (int) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ2(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ
DLTZ2 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = sum_{i=m}^{d-1} (x_i - 0.5)^2
The pareto front is given by the unit hypersphere sum{i} f_i^2 = 1. Note: the pareto front is completely concave. The goal is to minimize both objectives.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- gen_pareto_front(n)[source]¶
Generate n pareto optimal points.
The pareto points are randomly sampled from the hypersphere’s positive section.
- Parameters
n (int) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ3(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ2
DTLZ3 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = 100 * [k + sum_{i=m}^{n-1} (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5))]
g(x) introduces (3k−1) local Pareto fronts that are parallel to the one global Pareto-optimal front.
The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ4(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ2
DTLZ4 test problem.
This is the same as DTLZ2, but with alpha=100 as the exponent, resulting in dense solutions near the f_M-f_1 plane.
The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ5(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ
DTLZ5 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = (1 + g(x)) * cos(theta_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(theta_0 * pi / 2) theta_i = pi / (4 * (1 + g(X_m)) * (1 + 2 * g(X_m) * x_i)) for i = 1, … , M-2 g(x) = sum_{i=m}^{d-1} (x_i - 0.5)^2
The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.DTLZ7(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ
DTLZ7 test problem.
- d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = x_0 f_1(x) = x_1 … f_{M-1}(x) = (1 + g(X_m)) * h(f_0, f_1, …, f_{M-2}, g, x) h(f_0, f_1, …, f_{M-2}, g, x) = M - sum_{i=0}^{M-2} f_i(x)/(1+g(x)) * (1 + sin(3 * pi * f_i(x)))
This test problem has 2M-1 disconnected Pareto-optimal regions in the search space.
The pareto frontier corresponds to X_m = 0.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.VehicleSafety(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
Optimize Vehicle crash-worthiness.
See [Tanabe2020] for details.
The reference point is 1.1 * the nadir point from approximate front provided by [Tanabe2020].
The maximum hypervolume is computed using the approximate pareto front from [Tanabe2020].
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 5¶
- num_objectives: int = 3¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.ZDT(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
Base class for ZDT problems.
See [Zitzler2000] for more details on ZDT.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.ZDT1(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.ZDT
ZDT1 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = x_0 f_1(x) = g(x) * (1 - sqrt(x_0 / g(x)) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i
The reference point comes from [Yang2019a].
The pareto front is convex.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- gen_pareto_front(n)[source]¶
Generate n pareto optimal points.
- Parameters
n (int) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.ZDT2(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.ZDT
ZDT2 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = x_0 f_1(x) = g(x) * (1 - (x_0 / g(x))^2) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i
The reference point comes from [Yang2019a].
The pareto front is concave.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- gen_pareto_front(n)[source]¶
Generate n pareto optimal points.
- Parameters
n (int) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.ZDT3(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.ZDT
ZDT3 test problem.
d-dimensional problem evaluated on [0, 1]^d:
f_0(x) = x_0 f_1(x) = 1 - sqrt(x_0 / g(x)) - x_0 / g * sin(10 * pi * x_0) g(x) = 1 + 9 / (d - 1) * sum_{i=1}^{d-1} x_i
The reference point comes from [Yang2019a].
The pareto front consists of several discontinuous convex parts.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- gen_pareto_front(n)[source]¶
Generate n pareto optimal points.
- Parameters
n (int) –
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.CarSideImpact(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
Car side impact problem.
See [Tanabe2020] for details.
The reference point is nadir + 0.1 * (ideal - nadir) where the ideal and nadir points come from the approximate Pareto frontier from [Tanabe2020]. The max_hv was computed based on the approximate Pareto frontier from [Tanabe2020].
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- num_objectives: int = 4¶
- dim: int = 7¶
- class botorch.test_functions.multi_objective.BNH(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,botorch.test_functions.base.ConstrainedBaseTestProblem
The constrained BNH problem.
See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 2¶
- num_objectives: int = 2¶
- num_constraints: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.SRN(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,botorch.test_functions.base.ConstrainedBaseTestProblem
The constrained SRN problem.
See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 2¶
- num_objectives: int = 2¶
- num_constraints: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.CONSTR(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,botorch.test_functions.base.ConstrainedBaseTestProblem
The constrained CONSTR problem.
See [GarridoMerchan2020] for more details on this problem. Note that this is a minimization problem.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 2¶
- num_objectives: int = 2¶
- num_constraints: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.ConstrainedBraninCurrin(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.BraninCurrin
,botorch.test_functions.base.ConstrainedBaseTestProblem
Constrained Branin Currin Function.
This uses the disk constraint from [Gelbart2014].
Constructor for Branin-Currin.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 2¶
- num_objectives: int = 2¶
- num_constraints: int = 1¶
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.C2DTLZ2(dim, num_objectives=2, noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.multi_objective.DTLZ2
,botorch.test_functions.base.ConstrainedBaseTestProblem
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
dim (int) –
num_objectives (int) –
- Return type
None
- num_constraints: int = 1¶
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- num_objectives: int¶
- dim: int¶
- training: bool¶
- class botorch.test_functions.multi_objective.OSY(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,botorch.test_functions.base.ConstrainedBaseTestProblem
The OSY test problem from [Oszycka1995]. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.py Note that this implementation assumes minimization, so please choose negate=True.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 6¶
- num_constraints: int = 6¶
- num_objectives: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶
- class botorch.test_functions.multi_objective.WeldedBeam(noise_std=None, negate=False)[source]¶
Bases:
botorch.test_functions.base.MultiObjectiveTestProblem
,botorch.test_functions.base.ConstrainedBaseTestProblem
The Welded Beam test problem. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/welded_beam.py Note that this implementation assumes minimization, so please choose negate=True.
Base constructor for multi-objective test functions.
- Parameters
noise_std (Optional[float]) – Standard deviation of the observation noise.
negate (bool) – If True, negate the objectives.
- Return type
None
- dim: int = 4¶
- num_constraints: int = 4¶
- num_objectives: int = 2¶
- evaluate_true(X)[source]¶
Evaluate the function (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) –
- Return type
torch.Tensor
- evaluate_slack_true(X)[source]¶
Evaluate the constraint slack (w/o observation noise) on a set of points.
- Parameters
X (torch.Tensor) – A batch_shape x d-dim tensor of point(s) at which to evaluate the constraint slacks: c_1(X), …., c_{n_c}(X).
- Returns
- A batch_shape x n_c-dim tensor of constraint slack (where positive slack
corresponds to the constraint being feasible).
- Return type
torch.Tensor
- training: bool¶