Source code for botorch.utils.gp_sampling

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

from copy import deepcopy
from math import pi
from typing import List, Optional

import torch
from botorch.models.converter import batched_to_model_list
from botorch.models.deterministic import GenericDeterministicModel
from botorch.models.model import Model
from botorch.models.model_list_gp_regression import ModelListGP
from botorch.models.multitask import MultiTaskGP
from botorch.utils.sampling import manual_seed
from gpytorch.kernels import Kernel, RBFKernel, MaternKernel, ScaleKernel
from gpytorch.utils.cholesky import psd_safe_cholesky
from torch import Tensor
from torch.distributions import MultivariateNormal
from torch.nn import Module


[docs]class GPDraw(Module): r"""Convenience wrapper for sampling a function from a GP prior. This wrapper implicitly defines the GP sample as a self-updating function by keeping track of the evaluated points and respective base samples used during the evaluation. This does not yet support multi-output models. """ def __init__(self, model: Model, seed: Optional[int] = None) -> None: r"""Construct a GP function sampler. Args: model: The Model defining the GP prior. """ super().__init__() self._model = deepcopy(model) seed = torch.tensor( seed if seed is not None else torch.randint(0, 1000000, (1,)).item() ) self.register_buffer("_seed", seed) @property def Xs(self) -> Tensor: """A `(batch_shape) x n_eval x d`-dim tensor of locations at which the GP was evaluated (or `None` if the sample has never been evaluated). """ try: return self._Xs except AttributeError: return None @property def Ys(self) -> Tensor: """A `(batch_shape) x n_eval x d`-dim tensor of associated function values (or `None` if the sample has never been evaluated). """ try: return self._Ys except AttributeError: return None
[docs] def forward(self, X: Tensor) -> Tensor: r"""Evaluate the GP sample function at a set of points X. Args: X: A `batch_shape x n x d`-dim tensor of points Returns: The value of the GP sample at the `n` points. """ if self.Xs is None: X_eval = X # first time, no previous evaluation points else: X_eval = torch.cat([self.Xs, X], dim=-2) posterior = self._model.posterior(X=X_eval) base_sample_shape = posterior.base_sample_shape # re-use old samples bs_shape = base_sample_shape[:-2] + X.shape[-2:-1] + base_sample_shape[-1:] with manual_seed(seed=int(self._seed)): new_base_samples = torch.randn(bs_shape, device=X.device, dtype=X.dtype) seed = self._seed + 1 if self.Xs is None: base_samples = new_base_samples else: base_samples = torch.cat([self._base_samples, new_base_samples], dim=-2) # TODO: Deduplicate repeated evaluations / deal with numerical degeneracies # that could lead to non-determinsitic evaluations. We could use SVD- or # eigendecomposition-based sampling, but we probably don't want to use this # by default for performance reasonse. Ys = posterior.rsample(torch.Size(), base_samples=base_samples) self.register_buffer("_Xs", X_eval) self.register_buffer("_Ys", Ys) self.register_buffer("_seed", seed) self.register_buffer("_base_samples", base_samples) return self.Ys[..., -(X.size(-2)) :, :]
[docs]class RandomFourierFeatures(Module): """A class that represents Random Fourier Features.""" def __init__(self, kernel: Kernel, input_dim: int, num_rff_features: int) -> None: r"""Initialize RandomFourierFeatures. Args: kernel: the GP kernel input_dim: the input dimension to the GP kernel num_rff_features: the number of fourier features """ if not isinstance(kernel, ScaleKernel): base_kernel = kernel outputscale = torch.tensor( 1.0, dtype=base_kernel.lengthscale.dtype, device=base_kernel.lengthscale.device, ) else: base_kernel = kernel.base_kernel outputscale = kernel.outputscale.detach().clone() if not isinstance(base_kernel, (MaternKernel, RBFKernel)): raise NotImplementedError("Only Matern and RBF kernels are supported.") elif len(base_kernel.batch_shape) > 0: raise NotImplementedError("Batched kernels are not supported.") super().__init__() self.register_buffer("outputscale", outputscale) self.register_buffer("lengthscale", base_kernel.lengthscale.detach().clone()) self.register_buffer( "weights", self._get_weights( base_kernel=base_kernel, input_dim=input_dim, num_rff_features=num_rff_features, ), ) # initialize uniformly in [0, 2 * pi] self.register_buffer( "bias", 2 * pi * torch.rand( num_rff_features, dtype=base_kernel.lengthscale.dtype, device=base_kernel.lengthscale.device, ), ) def _get_weights( self, base_kernel: Kernel, input_dim: int, num_rff_features: int ) -> Tensor: r"""Sample weights for RFF. Args: kernel: the GP base kernel input_dim: the input dimension to the GP kernel num_rff_features: the number of fourier features Returns: A `input_dim x num_rff_features`-dim tensor of weights """ weights = torch.randn( input_dim, num_rff_features, dtype=base_kernel.lengthscale.dtype, device=base_kernel.lengthscale.device, ) if isinstance(base_kernel, MaternKernel): gamma_dist = torch.distributions.Gamma(base_kernel.nu, base_kernel.nu) gamma_samples = gamma_dist.sample(torch.Size([1, num_rff_features])).to( weights ) weights = torch.rsqrt(gamma_samples) * weights return weights
[docs] def forward(self, X: Tensor) -> Tensor: r"""Get fourier basis features for the provided inputs.""" X_scaled = torch.div(X, self.lengthscale) outputs = torch.cos(X_scaled @ self.weights + self.bias) return ( torch.sqrt(torch.tensor(2.0) * self.outputscale / self.weights.shape[-1]) * outputs )
[docs]def get_deterministic_model( weights: List[Tensor], bases: List[RandomFourierFeatures] ) -> GenericDeterministicModel: """Get a deterministic model using the provided weights and bases for each output. Args: weights: a list of weights with `m` elements bases: a list of RandomFourierFeatures with `m` elements. Returns: A deterministic model. """ def evaluate_gp_sample(X): return torch.stack([basis(X) @ w for w, basis in zip(weights, bases)], dim=-1) return GenericDeterministicModel(f=evaluate_gp_sample, num_outputs=len(weights))
[docs]def get_weights_posterior(X: Tensor, y: Tensor, sigma_sq: float) -> MultivariateNormal: r"""Sample bayesian linear regression weights. Args: X: a `n x num_rff_features`-dim tensor of inputs y: a `n`-dim tensor of outputs sigma_sq: the noise variance Returns: The posterior distribution over the weights. """ with torch.no_grad(): A = X.T @ X + sigma_sq * torch.eye(X.shape[-1], dtype=X.dtype, device=X.device) # mean is given by: m = S @ x.T @ y, where S = A_inv # compute inverse of A using solves # covariance is A_inv * sigma L_A = psd_safe_cholesky(A) # solve L_A @ u = I Iw = torch.eye(L_A.shape[0], dtype=X.dtype, device=X.device) u = torch.triangular_solve(Iw, L_A, upper=False).solution # solve L_A^T @ S = u A_inv = torch.triangular_solve(u, L_A.T).solution m = A_inv @ X.T @ y L = psd_safe_cholesky(A_inv * sigma_sq) return MultivariateNormal(loc=m, scale_tril=L)
[docs]def get_gp_samples( model: Model, num_outputs: int, n_samples: int, num_rff_features: int = 500 ) -> List[GenericDeterministicModel]: r"""Sample functions from GP posterior using RFF. Args: model: the model num_outputs: the number of outputs n_samples: the number of sampled functions to draw num_rff_features: the number of random fourier features Returns: A list of sampled functions. """ if num_outputs > 1: if not isinstance(model, ModelListGP): models = batched_to_model_list(model).models else: models = model.models else: models = [model] if isinstance(models[0], MultiTaskGP): raise NotImplementedError weights = [] bases = [] for m in range(num_outputs): train_X = models[m].train_inputs[0] # get random fourier features basis = RandomFourierFeatures( kernel=models[m].covar_module, input_dim=train_X.shape[-1], num_rff_features=num_rff_features, ) bases.append(basis) phi_X = basis(train_X) # sample weights from bayesian linear model mvn = get_weights_posterior( X=phi_X, y=models[m].train_targets, sigma_sq=models[m].likelihood.noise.mean().item(), ) weights.append(mvn.sample(torch.Size([n_samples]))) # construct a determinisitic, multi-output model for each sample models = [ get_deterministic_model( weights=[weights[m][i] for m in range(num_outputs)], bases=bases, ) for i in range(n_samples) ] return models