botorch.fit¶
Utilities for model fitting.
- botorch.fit.fit_gpytorch_model(mll, optimizer=<function fit_gpytorch_scipy>, **kwargs)[source]¶
Fit hyperparameters of a GPyTorch model.
On optimizer failures, a new initial condition is sampled from the hyperparameter priors and optimization is retried. The maximum number of retries can be passed in as a max_retries kwarg (default is 5).
Optimizer functions are in botorch.optim.fit.
- Parameters
mll (gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood) – MarginalLogLikelihood to be maximized.
optimizer (Callable) – The optimizer function.
kwargs (Any) – Arguments passed along to the optimizer function, including max_retries and sequential (controls the fitting of ModelListGP and BatchedMultiOutputGPyTorchModel models) or approx_mll (whether to use gpytorch’s approximate MLL computation).
- Returns
MarginalLogLikelihood with optimized parameters.
- Return type
gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood
Example
>>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll)