Source code for botorch.models.higher_order_gp

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
References

.. [Zhe2019hogp]
    S. Zhe, W. Xing, and R. M. Kirby. Scalable high-order gaussian process regression.
    Proceedings of Machine Learning Research, volume 89, Apr 2019.
"""

from __future__ import annotations

import warnings
from contextlib import ExitStack
from typing import Any, List, Optional, Union, Tuple

import torch
from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel
from botorch.models.transforms.input import InputTransform
from botorch.models.transforms.outcome import OutcomeTransform, Standardize
from botorch.models.utils import gpt_posterior_settings
from botorch.posteriors import (
    GPyTorchPosterior,
    HigherOrderGPPosterior,
    TransformedPosterior,
)
from gpytorch.constraints import GreaterThan
from gpytorch.distributions import MultivariateNormal
from gpytorch.kernels import Kernel, MaternKernel
from gpytorch.lazy import (
    BatchRepeatLazyTensor,
    DiagLazyTensor,
    KroneckerProductLazyTensor,
    LazyTensor,
    ZeroLazyTensor,
)
from gpytorch.likelihoods import (
    GaussianLikelihood,
    Likelihood,
)
from gpytorch.models import ExactGP
from gpytorch.priors.torch_priors import GammaPrior, MultivariateNormalPrior
from gpytorch.settings import fast_pred_var, skip_posterior_variances
from torch import Tensor
from torch.nn import ModuleList, Parameter, ParameterList


MIN_INFERRED_NOISE_LEVEL = 1e-4


[docs]class FlattenedStandardize(Standardize): r""" Standardize outcomes in a structured multi-output settings by reshaping the batched output dimensions to be a vector. Specifically, an output dimension of [a x b x c] will be squeezed to be a vector of [a * b * c]. """ def __init__( self, output_shape: torch.Size, batch_shape: torch.Size = None, min_stdv: float = 1e-8, ): if batch_shape is None: batch_shape = torch.Size() super(FlattenedStandardize, self).__init__( m=1, outputs=None, batch_shape=batch_shape, min_stdv=min_stdv ) self.output_shape = output_shape self.batch_shape = batch_shape def _squeeze_to_single_output(self, tsr: Tensor) -> Tensor: dim_ct = tsr.ndim - len(self.output_shape) - 1 return tsr.reshape(*tsr.shape[:dim_ct], -1, 1) def _return_to_output_shape(self, tsr: Tensor) -> Tensor: out = tsr.reshape(*tsr.shape[:-2], -1, *self.output_shape) return out
[docs] def forward( self, Y: Tensor, Yvar: Optional[Tensor] = None ) -> Tuple[Tensor, Optional[Tensor]]: Y = self._squeeze_to_single_output(Y) if Yvar is not None: Yvar = self._squeeze_to_single_output(Yvar) Y, Yvar = super().forward(Y, Yvar) Y_out = self._return_to_output_shape(Y) if Yvar is not None: Yvar_out = self._return_to_output_shape(Yvar) else: Yvar_out = None return Y_out, Yvar_out
[docs] def untransform( self, Y: Tensor, Yvar: Optional[Tensor] = None ) -> Tuple[Tensor, Optional[Tensor]]: Y = self._squeeze_to_single_output(Y) if Yvar is not None: Yvar = self._squeeze_to_single_output(Yvar) Y, Yvar = super().untransform(Y, Yvar) Y = self._return_to_output_shape(Y) if Yvar is not None: Yvar = self._return_to_output_shape(Yvar) return Y, Yvar
[docs] def untransform_posterior( self, posterior: HigherOrderGPPosterior ) -> TransformedPosterior: # TODO: return a HigherOrderGPPosterior once rescaling constant # muls * LazyTensors won't force a dense decomposition rather than a # Kronecker structured one. return TransformedPosterior( posterior=posterior, sample_transform=lambda s: self._return_to_output_shape( self.means + self.stdvs * self._squeeze_to_single_output(s) ), mean_transform=lambda m, v: self._return_to_output_shape( self.means + self.stdvs * self._squeeze_to_single_output(m) ), variance_transform=lambda m, v: self._return_to_output_shape( self._stdvs_sq * self._squeeze_to_single_output(v) ), )
[docs]class HigherOrderGP(BatchedMultiOutputGPyTorchModel, ExactGP): r""" A Higher order Gaussian process model (HOGP) (predictions are matrices/tensors) as described in [Zhe2019hogp]_. The posterior uses Matheron's rule [Doucet2010sampl]_ as described in [Maddox2021bohdo]_. """ def __init__( self, train_X: Tensor, train_Y: Tensor, likelihood: Optional[Likelihood] = None, covar_modules: Optional[List[Kernel]] = None, num_latent_dims: Optional[List[int]] = None, learn_latent_pars: bool = True, latent_init: str = "default", outcome_transform: Optional[OutcomeTransform] = None, input_transform: Optional[InputTransform] = None, ): r"""A HigherOrderGP model for high-dim output regression. Args: train_X: A `batch_shape x n x d`-dim tensor of training inputs. train_Y: A `batch_shape x n x output_shape`-dim tensor of training targets. likelihood: Gaussian likelihood for the model. covar_modules: List of kernels for each output structure. num_latent_dims: Sizes for the latent dimensions. learn_latent_pars: If true, learn the latent parameters. latent_init: [default or gp] how to initialize the latent parameters. """ if input_transform is not None: input_transform.to(train_X) # infer the dimension of `output_shape`. num_output_dims = train_Y.dim() - train_X.dim() + 1 batch_shape = train_X.shape[:-2] if len(batch_shape) > 1: raise NotImplementedError( "HigherOrderGP currently only supports 1-dim `batch_shape`." ) if outcome_transform is not None: if isinstance(outcome_transform, Standardize) and not isinstance( outcome_transform, FlattenedStandardize ): warnings.warn( "HigherOrderGP does not support the outcome_transform " "`Standardize`! Using `FlattenedStandardize` with `output_shape=" f"{train_Y.shape[- num_output_dims:]} and batch_shape=" f"{batch_shape} instead.", RuntimeWarning, ) outcome_transform = FlattenedStandardize( output_shape=train_Y.shape[-num_output_dims:], batch_shape=batch_shape, ) train_Y, _ = outcome_transform(train_Y) self._aug_batch_shape = batch_shape self._num_dimensions = num_output_dims + 1 self._num_outputs = train_Y.shape[0] if batch_shape else 1 self.target_shape = train_Y.shape[-num_output_dims:] self._input_batch_shape = batch_shape if likelihood is None: noise_prior = GammaPrior(1.1, 0.05) noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate likelihood = GaussianLikelihood( noise_prior=noise_prior, batch_shape=self._aug_batch_shape, noise_constraint=GreaterThan( MIN_INFERRED_NOISE_LEVEL, transform=None, initial_value=noise_prior_mode, ), ) else: self._is_custom_likelihood = True super().__init__( train_X, train_Y.view(*self._aug_batch_shape, -1), likelihood=likelihood, ) if covar_modules is not None: self.covar_modules = ModuleList(covar_modules) else: self.covar_modules = ModuleList( [ MaternKernel( nu=2.5, lengthscale_prior=GammaPrior(3.0, 6.0), batch_shape=self._aug_batch_shape, ard_num_dims=1 if dim > 0 else train_X.shape[-1], ) for dim in range(self._num_dimensions) ] ) if num_latent_dims is None: num_latent_dims = [1] * (self._num_dimensions - 1) self.to(train_X) self._initialize_latents( latent_init=latent_init, num_latent_dims=num_latent_dims, learn_latent_pars=learn_latent_pars, device=train_Y.device, dtype=train_Y.dtype, ) if outcome_transform is not None: self.outcome_transform = outcome_transform if input_transform is not None: self.input_transform = input_transform def _initialize_latents( self, latent_init: str, num_latent_dims: List[int], learn_latent_pars: bool, device: torch.device, dtype: torch.dtype, ): self.latent_parameters = ParameterList() if latent_init == "default": for dim_num in range(len(self.covar_modules) - 1): self.latent_parameters.append( Parameter( torch.rand( *self._aug_batch_shape, self.target_shape[dim_num], num_latent_dims[dim_num], device=device, dtype=dtype, ), requires_grad=learn_latent_pars, ) ) elif latent_init == "gp": for dim_num, covar in enumerate(self.covar_modules[1:]): latent_covar = covar( torch.linspace( 0.0, 1.0, self.target_shape[dim_num], device=device, dtype=dtype, ) ).add_jitter(1e-4) latent_dist = MultivariateNormal( torch.zeros( self.target_shape[dim_num], device=device, dtype=dtype, ), latent_covar, ) sample_shape = torch.Size( ( *self._aug_batch_shape, num_latent_dims[dim_num], ) ) latent_sample = latent_dist.sample(sample_shape=sample_shape) latent_sample = latent_sample.reshape( *self._aug_batch_shape, self.target_shape[dim_num], num_latent_dims[dim_num], ) self.latent_parameters.append( Parameter( latent_sample, requires_grad=learn_latent_pars, ) ) self.register_prior( "latent_parameters_" + str(dim_num), MultivariateNormalPrior( latent_dist.loc, latent_dist.covariance_matrix.detach().clone() ), lambda module, dim_num=dim_num: self.latent_parameters[dim_num], )
[docs] def forward(self, X: Tensor) -> MultivariateNormal: if self.training: X = self.transform_inputs(X) covariance_list = [] covariance_list.append(self.covar_modules[0](X)) for cm, param in zip(self.covar_modules[1:], self.latent_parameters): if not self.training: with torch.no_grad(): covariance_list.append(cm(param)) else: covariance_list.append(cm(param)) # check batch_shapes if covariance_list[0].batch_shape != covariance_list[1].batch_shape: for i in range(1, len(covariance_list)): cm = covariance_list[i] covariance_list[i] = BatchRepeatLazyTensor( cm, covariance_list[0].batch_shape ) kronecker_covariance = KroneckerProductLazyTensor(*covariance_list) # TODO: expand options for the mean module via batch shaping? mean = torch.zeros( *covariance_list[0].batch_shape, kronecker_covariance.shape[-1], device=kronecker_covariance.device, dtype=kronecker_covariance.dtype, ) return MultivariateNormal(mean, kronecker_covariance)
[docs] def get_fantasy_model(self, inputs, targets, **kwargs): # we need to squeeze the targets in order to preserve the shaping inputs_batch_dims = len(inputs.shape[:-2]) target_shape = (*inputs.shape[:-2], -1) if (inputs_batch_dims + self._num_dimensions) < targets.ndim: target_shape = (targets.shape[0], *target_shape) reshaped_targets = targets.view(*target_shape) return super().get_fantasy_model(inputs, reshaped_targets, **kwargs)
[docs] def condition_on_observations( self, X: Tensor, Y: Tensor, **kwargs: Any ) -> HigherOrderGP: r"""Condition the model on new observations. Args: X: A `batch_shape x n' x d`-dim Tensor, where `d` is the dimension of the feature space, `m` is the number of points per batch, and `batch_shape` is the batch shape (must be compatible with the batch shape of the model). Y: A `batch_shape' x n' x m_d`-dim Tensor, where `m_d` is the shaping of the model outputs, `n'` is the number of points per batch, and `batch_shape'` is the batch shape of the observations. `batch_shape'` must be broadcastable to `batch_shape` using standard broadcasting semantics. If `Y` has fewer batch dimensions than `X`, its is assumed that the missing batch dimensions are the same for all `Y`. Returns: A `BatchedMultiOutputGPyTorchModel` object of the same type with `n + n'` training examples, representing the original model conditioned on the new observations `(X, Y)` (and possibly noise observations passed in via kwargs). """ noise = kwargs.get("noise") if hasattr(self, "outcome_transform"): # we need to apply transforms before shifting batch indices around Y, noise = self.outcome_transform(Y, noise) self._validate_tensor_args(X=X, Y=Y, Yvar=noise, strict=False) # we don't need to do un-squeezing because Y already is batched # we don't support fixed noise here yet # if noise is not None: # kwargs.update({"noise": noise}) fantasy_model = super( BatchedMultiOutputGPyTorchModel, self ).condition_on_observations(X=X, Y=Y, **kwargs) fantasy_model._input_batch_shape = fantasy_model.train_targets.shape[ : (-1 if self._num_outputs == 1 else -2) ] fantasy_model._aug_batch_shape = fantasy_model.train_targets.shape[:-1] return fantasy_model
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: Union[bool, Tensor] = False, **kwargs: Any, ) -> GPyTorchPosterior: self.eval() # make sure we're calling a posterior no_pred_variance = skip_posterior_variances._state with ExitStack() as es: es.enter_context(gpt_posterior_settings()) es.enter_context(fast_pred_var(True)) # we need to skip posterior variances here es.enter_context(skip_posterior_variances(True)) mvn = self(X) if observation_noise is not False: # TODO: implement Kronecker + diagonal solves so that this is possible. # if torch.is_tensor(observation_noise): # # TODO: Validate noise shape # # make observation_noise `batch_shape x q x n` # obs_noise = observation_noise.transpose(-1, -2) # mvn = self.likelihood(mvn, X, noise=obs_noise) # elif isinstance(self.likelihood, FixedNoiseGaussianLikelihood): # noise = self.likelihood.noise.mean().expand(X.shape[:-1]) # mvn = self.likelihood(mvn, X, noise=noise) # else: mvn = self.likelihood(mvn, X) # lazy covariance matrix includes the interpolated version of the full # covariance matrix so we can actually grab that instead. if X.ndimension() > self.train_inputs[0].ndimension(): X_batch_shape = X.shape[:-2] train_inputs = self.train_inputs[0].reshape( *[1] * len(X_batch_shape), *self.train_inputs[0].shape ) train_inputs = train_inputs.repeat( *X_batch_shape, *[1] * self.train_inputs[0].ndimension() ) else: train_inputs = self.train_inputs[0] full_covar = self.covar_modules[0](torch.cat((train_inputs, X), dim=-2)) if no_pred_variance: pred_variance = mvn.variance else: # we detach all of the latent dimension posteriors which precludes # computing quantities computed on the posterior wrt latents as # this reduces the memory overhead somewhat # TODO: add these back in if necessary joint_covar = self._get_joint_covariance([X]) pred_variance = self.make_posterior_variances(joint_covar) full_covar = KroneckerProductLazyTensor( full_covar, *[x.detach() for x in joint_covar.lazy_tensors[1:]] ) joint_covar_list = [self.covar_modules[0](X, train_inputs)] batch_shape = joint_covar_list[0].batch_shape for cm, param in zip(self.covar_modules[1:], self.latent_parameters): covar = cm(param).detach() if covar.batch_shape != batch_shape: covar = BatchRepeatLazyTensor(covar, batch_shape) joint_covar_list.append(covar) test_train_covar = KroneckerProductLazyTensor(*joint_covar_list) # mean and variance get reshaped into the target shape new_mean = mvn.mean.reshape(*X.shape[:-1], *self.target_shape) if not no_pred_variance: new_variance = pred_variance.reshape(*X.shape[:-1], *self.target_shape) new_variance = DiagLazyTensor(new_variance) else: new_variance = ZeroLazyTensor( *X.shape[:-1], *self.target_shape, self.target_shape[-1] ) mvn = MultivariateNormal(new_mean, new_variance) train_train_covar = self.prediction_strategy.lik_train_train_covar.detach() # return a specialized Posterior to allow for sampling # cloning the full covar allows backpropagation through it posterior = HigherOrderGPPosterior( mvn=mvn, train_targets=self.train_targets.unsqueeze(-1), train_train_covar=train_train_covar, test_train_covar=test_train_covar, joint_covariance_matrix=full_covar.clone(), output_shape=X.shape[:-1] + self.target_shape, num_outputs=self._num_outputs, ) if hasattr(self, "outcome_transform"): posterior = self.outcome_transform.untransform_posterior(posterior) return posterior
# TODO: remove when this gets exposed in gpytorch def _get_joint_covariance(self, inputs): """ Internal method to expose the joint test train covariance. """ from gpytorch.models import ExactGP from gpytorch.utils.broadcasting import _mul_broadcast_shape train_inputs = self.train_inputs # Concatenate the input to the training input full_inputs = [] batch_shape = train_inputs[0].shape[:-2] for train_input, input in zip(train_inputs, inputs): # Make sure the batch shapes agree for training/test data # This seems to be deprecated # if batch_shape != train_input.shape[:-2]: # batch_shape = _mul_broadcast_shape( # batch_shape, train_input.shape[:-2] # ) # train_input = train_input.expand( # *batch_shape, *train_input.shape[-2:] # ) if batch_shape != input.shape[:-2]: batch_shape = _mul_broadcast_shape(batch_shape, input.shape[:-2]) train_input = train_input.expand(*batch_shape, *train_input.shape[-2:]) input = input.expand(*batch_shape, *input.shape[-2:]) full_inputs.append(torch.cat([train_input, input], dim=-2)) # Get the joint distribution for training/test data full_output = super(ExactGP, self).__call__(*full_inputs) return full_output.lazy_covariance_matrix
[docs] def make_posterior_variances(self, joint_covariance_matrix: LazyTensor) -> Tensor: r""" Computes the posterior variances given the data points X. As currently implemented, it computes another forwards call with the stacked data to get out the joint covariance across all data points. """ # TODO: use the exposed joint covariances from the prediction strategy data_joint_covariance = joint_covariance_matrix.lazy_tensors[ 0 ].evaluate_kernel() num_train = self.train_inputs[0].shape[-2] test_train_covar = data_joint_covariance[..., num_train:, :num_train] train_train_covar = data_joint_covariance[..., :num_train, :num_train] test_test_covar = data_joint_covariance[..., num_train:, num_train:] full_train_train_covar = KroneckerProductLazyTensor( train_train_covar, *joint_covariance_matrix.lazy_tensors[1:] ) full_test_test_covar = KroneckerProductLazyTensor( test_test_covar, *joint_covariance_matrix.lazy_tensors[1:] ) full_test_train_covar_list = [test_train_covar] + [ *joint_covariance_matrix.lazy_tensors[1:] ] train_evals, train_evecs = full_train_train_covar.symeig(eigenvectors=True) # (\kron \Lambda_i + \sigma^2 I)^{-1} train_inv_evals = DiagLazyTensor(1.0 / (train_evals + self.likelihood.noise)) # compute K_i S_i \hadamard K_i S_i test_train_hadamard = KroneckerProductLazyTensor( *[ lt1.matmul(lt2).evaluate() ** 2 for lt1, lt2 in zip( full_test_train_covar_list, train_evecs.lazy_tensors ) ] ) # and compute the column sums of # (\kron K_i S_i * K_i S_i) \tilde{\Lambda}^{-1} test_train_pred_covar = test_train_hadamard.matmul(train_inv_evals).sum(dim=-1) pred_variances = full_test_test_covar.diag() - test_train_pred_covar return pred_variances