Source code for botorch.models.deterministic
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Deterministic Models. Simple wrappers that allow the usage of deterministic
mappings via the BoTorch Model and Posterior APIs. Useful e.g. for defining
known cost functions for cost-aware acquisition utilities.
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import Any, Callable, List, Optional, Union
import torch
from torch import Tensor
from ..exceptions.errors import UnsupportedError
from ..posteriors.deterministic import DeterministicPosterior
from .model import Model
[docs]class DeterministicModel(Model, ABC):
r"""Abstract base class for deterministic models."""
[docs] @abstractmethod
def forward(self, X: Tensor) -> Tensor:
r"""Compute the (deterministic) model output at X.
Args:
X: A `batch_shape x n x d`-dim input tensor `X`.
Returns:
A `batch_shape x n x m`-dimensional output tensor (the outcome
dimension `m` must be explicit if `m=1`).
"""
pass # pragma: no cover
@property
def num_outputs(self) -> int:
r"""The number of outputs of the model."""
return self._num_outputs
[docs] def posterior(
self, X: Tensor, output_indices: Optional[List[int]] = None, **kwargs: Any
) -> DeterministicPosterior:
r"""Compute the (deterministic) posterior at X."""
if kwargs.get("observation_noise") is not None:
# TODO: Consider returning an MVN here instead
raise UnsupportedError(
"Deterministic models do not support observation noise."
)
values = self.forward(X)
if output_indices is not None:
values = values[..., output_indices]
return DeterministicPosterior(values=values)
[docs]class GenericDeterministicModel(DeterministicModel):
r"""A generic deterministic model constructed from a callable."""
def __init__(self, f: Callable[[Tensor], Tensor], num_outputs: int = 1) -> None:
r"""A generic deterministic model constructed from a callable.
Args:
f: A callable mapping a `batch_shape x n x d`-dim input tensor `X`
to a `batch_shape x n x m`-dimensional output tensor (the
outcome dimension `m` must be explicit, even if `m=1`).
num_outputs: The number of outputs `m`.
"""
super().__init__()
self._f = f
self._num_outputs = num_outputs
[docs] def subset_output(self, idcs: List[int]) -> GenericDeterministicModel:
r"""Subset the model along the output dimension.
Args:
idcs: The output indices to subset the model to.
Returns:
The current model, subset to the specified output indices.
"""
def f_subset(X: Tensor) -> Tensor:
return self._f(X)[..., idcs]
return self.__class__(f=f_subset)
[docs] def forward(self, X: Tensor) -> Tensor:
r"""Compute the (deterministic) model output at X.
Args:
X: A `batch_shape x n x d`-dim input tensor `X`.
Returns:
A `batch_shape x n x m`-dimensional output tensor.
"""
return self._f(X)
[docs]class AffineDeterministicModel(DeterministicModel):
r"""An affine deterministic model."""
def __init__(self, a: Tensor, b: Union[Tensor, float] = 0.01) -> None:
r"""Affine deterministic model from weights and offset terms.
A simple model of the form
y[..., m] = b[m] + sum_{i=1}^d a[i, m] * X[..., i]
Args:
a: A `d x m`-dim tensor of linear weights, where `m` is the number
of outputs (must be explicit if `m=1`)
b: The affine (offset) term. Either a float (for single-output
models or if the offset is shared), or a `m`-dim tensor (with
different offset values for for the `m` different outputs).
"""
if not a.ndim == 2:
raise ValueError("a must be two-dimensional")
if not torch.is_tensor(b):
b = torch.tensor([b])
if not b.ndim == 1:
raise ValueError("b nust be one-dimensional")
super().__init__()
self.register_buffer("a", a)
self.register_buffer("b", b.expand(a.size(-1)))
self._num_outputs = a.size(-1)
[docs] def subset_output(self, idcs: List[int]) -> AffineDeterministicModel:
r"""Subset the model along the output dimension.
Args:
idcs: The output indices to subset the model to.
Returns:
The current model, subset to the specified output indices.
"""
a_sub = self.a.detach()[..., idcs].clone()
b_sub = self.b.detach()[..., idcs].clone()
return self.__class__(a=a_sub, b=b_sub)
[docs] def forward(self, X: Tensor) -> Tensor:
return self.b + torch.einsum("...d,dm", X, self.a)