botorch.fit¶
Utilities for model fitting.
-
botorch.fit.
fit_gpytorch_model
(mll, optimizer=<function fit_gpytorch_scipy>, **kwargs)[source]¶ Fit hyperparameters of a GPyTorch model.
On optimizer failures, a new initial condition is sampled from the hyperparameter priors and optimization is retried. The maximum number of retries can be passed in as a max_retries kwarg (default is 5).
Optimizer functions are in botorch.optim.fit.
- Parameters
mll (
MarginalLogLikelihood
) – MarginalLogLikelihood to be maximized.optimizer (
Callable
) – The optimizer function.kwargs (
Any
) – Arguments passed along to the optimizer function, including max_retries and sequential (controls the fitting of ModelListGP and BatchedMultiOutputGPyTorchModel models) or approx_mll (whether to use gpytorch’s approximate MLL computation).
- Return type
MarginalLogLikelihood
- Returns
MarginalLogLikelihood with optimized parameters.
Example
>>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> fit_gpytorch_model(mll)