Source code for botorch.optim.optimize

#!/usr/bin/env python3

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

r"""
Methods for optimizing acquisition functions.
"""

import warnings
from typing import Callable, Dict, List, Optional, Tuple, Union

import torch
from torch import Tensor

from ..acquisition.acquisition import AcquisitionFunction, OneShotAcquisitionFunction
from ..acquisition.knowledge_gradient import qKnowledgeGradient
from ..gen import gen_candidates_scipy
from .initializers import (
    gen_batch_initial_conditions,
    gen_one_shot_kg_initial_conditions,
)
from .utils import ConvergenceCriterion


[docs]def optimize_acqf( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, return_best_only: bool = True, sequential: bool = False, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of candidates via multi-start optimization. Args: acq_function: An AcquisitionFunction. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of samples for initialization. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. return_best_only: If False, outputs the solutions corresponding to all random restart initializations of the optimization. sequential: If False, uses joint optimization, otherwise uses sequential optimization. Returns: A two-element tuple containing - a `(num_restarts) x q x d`-dim tensor of generated candidates. - a tensor of associated acquisiton values. If `sequential=False`, this is a `(num_restarts)`-dim tensor of joint acquisition values (with explicit restart dimension if `return_best_only=False`). If `sequential=True`, this is a `q`-dim tensor of expected acquisition values conditional on having observed canidates `0,1,...,i-1`. Example: >>> # generate `q=2` candidates jointly using 20 random restarts >>> # and 512 raw samples >>> candidates, acq_value = optimize_acqf(qEI, bounds, 2, 20, 512) >>> generate `q=3` candidates sequentially using 15 random restarts >>> # and 256 raw samples >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf( >>> qEI, bounds, 3, 15, 256, sequential=True >>> ) """ if sequential: if not return_best_only: raise NotImplementedError( "return_best_only=False only supported for joint optimization" ) if isinstance(acq_function, OneShotAcquisitionFunction): raise NotImplementedError( "sequential optimization currently not supported for one-shot " "acquisition functions. Must have `sequential=False`." ) candidate_list, acq_value_list = [], [] candidates = torch.tensor([]) base_X_pending = acq_function.X_pending for _ in range(q): candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=None, return_best_only=True, sequential=False, ) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # Reset acq_func to previous X_pending state acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) options = options or {} if batch_initial_conditions is None: ic_gen = ( gen_one_shot_kg_initial_conditions if isinstance(acq_function, qKnowledgeGradient) else gen_batch_initial_conditions ) # TODO: Generating initial candidates should use parameter constraints. batch_initial_conditions = ic_gen( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, ) batch_limit: int = options.get("batch_limit", num_restarts) batch_candidates_list: List[Tensor] = [] batch_acq_values_list: List[Tensor] = [] start_idx = 0 while start_idx < num_restarts: end_idx = min(start_idx + batch_limit, num_restarts) # optimize using random restart optimization batch_candidates_curr, batch_acq_values_curr = gen_candidates_scipy( initial_conditions=batch_initial_conditions[start_idx:end_idx], acquisition_function=acq_function, lower_bounds=bounds[0], upper_bounds=bounds[1], options={ k: v for k, v in options.items() if k not in ("batch_limit", "nonnegative") }, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, ) batch_candidates_list.append(batch_candidates_curr) batch_acq_values_list.append(batch_acq_values_curr) start_idx += batch_limit batch_candidates = torch.cat(batch_candidates_list) batch_acq_values = torch.cat(batch_acq_values_list) if post_processing_func is not None: batch_candidates = post_processing_func(batch_candidates) if return_best_only: best = torch.argmax(batch_acq_values.view(-1), dim=0) batch_candidates = batch_candidates[best] batch_acq_values = batch_acq_values[best] if isinstance(acq_function, OneShotAcquisitionFunction): batch_candidates = acq_function.extract_candidates(X_full=batch_candidates) return batch_candidates, batch_acq_values
[docs]def optimize_acqf_cyclic( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, cyclic_options: Optional[Dict[str, Union[bool, float, int, str]]] = None, ) -> float: r"""Generate a set of `q` candidates via cyclic optimization. Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. If no initial conditions are provided, the default initialization will be used. cyclic_options: Options for convergence criterion for outer cyclic optimization. Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the `i`th value is the acquistion value conditional on having observed all candidates except candidate `i`. Example: >>> # generate `q=3` candidates cyclically using 15 random restarts >>> # 256 raw samples, and 4 cycles >>> >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf_cyclic( >>> qEI, bounds, 3, 15, 256, cyclic_options={"maxiter": 4} >>> ) """ # for the first cycle, optimize the q candidates sequentially candidates, acq_vals = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, sequential=True, ) if q > 1: cyclic_options = cyclic_options or {} convergence_criterion = ConvergenceCriterion(**cyclic_options) converged = convergence_criterion.evaluate(fvals=acq_vals) base_X_pending = acq_function.X_pending idxr = torch.ones(q, dtype=torch.bool, device=bounds.device) while not converged: for i in range(q): # optimize only candidate i idxr[i] = 0 acq_function.set_X_pending( torch.cat([base_X_pending, candidates[idxr]], dim=-2) if base_X_pending is not None else candidates[idxr] ) candidate_i, acq_val_i = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=candidates[i].unsqueeze(0), return_best_only=True, sequential=True, ) candidates[i] = candidate_i acq_vals[i] = acq_val_i idxr[i] = 1 converged = convergence_criterion.evaluate(fvals=acq_vals) acq_function.set_X_pending(base_X_pending) return candidates, acq_vals
[docs]def sequential_optimize( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, ) -> Tuple[Tensor, Tensor]: r"""DEPRECATED - Use optimize_acqf with sequential=True instead.""" warnings.warn( "sequential_optimize is deprecated. Please use optimize_acfq " "with sequential=True instead.", DeprecationWarning, ) candidates, acq_values = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=None, return_best_only=True, sequential=True, ) return candidates, acq_values
[docs]def joint_optimize( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, return_best_only: bool = True, ) -> Tuple[Tensor, Tensor]: r"""DEPRECATED - Use optimize_acqf instead.""" warnings.warn( "joint_optimize is deprecated. Please use optimize_acfq instead.", DeprecationWarning, ) batch_candidates, batch_acq_values = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=return_best_only, sequential=False, ) return batch_candidates, batch_acq_values