Source code for botorch.posteriors.fully_bayesian
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Callable, Optional
from warnings import warn
import torch
from botorch.posteriors.gpytorch import GPyTorchPosterior
from gpytorch.distributions import MultivariateNormal
from torch import Tensor
MCMC_DIM = -3 # Location of the MCMC batch dimension
TOL = 1e-6 # Bisection tolerance
[docs]
def batched_bisect(
f: Callable, target: float, bounds: Tensor, tol: float = TOL, max_steps: int = 32
):
r"""Batched bisection with a fixed number of steps.
Args:
f: Target function that takes a `(b1 x ... x bk)`-dim tensor and returns a
`(b1 x ... x bk)`-dim tensor.
target: Scalar target value of type float.
bounds: Lower and upper bounds, of size `2 x b1 x ... x bk`.
tol: We termniate if all elements satisfy are within `tol` of the `target`.
max_steps: Maximum number of bisection steps.
Returns:
Tensor X of size `b1 x ... x bk` such that `f(X) = target`.
"""
# Make sure target is actually contained in the interval
f1, f2 = f(bounds[0]), f(bounds[1])
if not ((f1 <= target) & (target <= f2)).all():
raise ValueError(
"The target is not contained in the interval specified by the bounds"
)
bounds = bounds.clone() # Will be modified in-place
center = bounds.mean(dim=0)
f_center = f(center)
for _ in range(max_steps):
go_left = f_center > target
bounds[1, go_left] = center[go_left]
bounds[0, ~go_left] = center[~go_left]
center = bounds.mean(dim=0)
f_center = f(center)
# Check convergence
if (f_center - target).abs().max() <= tol:
return center
return center
def _quantile(posterior: GaussianMixturePosterior, value: Tensor) -> Tensor:
r"""Compute the posterior quantiles for the mixture of models."""
if value.numel() > 1:
return torch.stack(
[_quantile(posterior=posterior, value=v) for v in value], dim=0
)
if value <= 0 or value >= 1:
raise ValueError("value is expected to be in the range (0, 1).")
dist = torch.distributions.Normal(
loc=posterior.mean, scale=posterior.variance.sqrt()
)
if posterior.mean.shape[MCMC_DIM] == 1: # Analytical solution
return dist.icdf(value).squeeze(MCMC_DIM)
icdf_val = dist.icdf(value)
low = icdf_val.min(dim=MCMC_DIM).values - TOL
high = icdf_val.max(dim=MCMC_DIM).values + TOL
bounds = torch.cat((low.unsqueeze(0), high.unsqueeze(0)), dim=0)
return batched_bisect(
f=lambda x: dist.cdf(x.unsqueeze(MCMC_DIM)).mean(dim=MCMC_DIM),
target=value.item(),
bounds=bounds,
)
[docs]
class GaussianMixturePosterior(GPyTorchPosterior):
r"""A Gaussian mixture posterior.
The MCMC batch dimension that corresponds to the models in the mixture is located
at `MCMC_DIM` (defined at the top of this file). Note that while each MCMC sample
corresponds to a Gaussian posterior, the posterior is rather a mixture of Gaussian
distributions.
"""
def __init__(self, distribution: MultivariateNormal) -> None:
r"""A posterior for a fully Bayesian model.
Args:
distribution: A GPyTorch MultivariateNormal (single-output case)
"""
super().__init__(distribution=distribution)
self._mean = (
distribution.mean if self._is_mt else distribution.mean.unsqueeze(-1)
)
self._variance = (
distribution.variance
if self._is_mt
else distribution.variance.unsqueeze(-1)
)
self._covariance_matrix = distribution.lazy_covariance_matrix
self._mixture_mean: Optional[Tensor] = None
self._mixture_variance: Optional[Tensor] = None
self._mixture_covariance_matrix: Optional[Tensor] = None
@property
def mixture_mean(self) -> Tensor:
r"""The posterior mean for the mixture of models."""
if self._mixture_mean is None:
self._mixture_mean = self._mean.mean(dim=MCMC_DIM)
return self._mixture_mean
@property
def mixture_variance(self) -> Tensor:
r"""The posterior variance for the mixture of models."""
if self._mixture_variance is None:
num_mcmc_samples = self.mean.shape[MCMC_DIM]
t1 = self._variance.sum(dim=MCMC_DIM) / num_mcmc_samples
t2 = self._mean.pow(2).sum(dim=MCMC_DIM) / num_mcmc_samples
t3 = -(self._mean.sum(dim=MCMC_DIM) / num_mcmc_samples).pow(2)
self._mixture_variance = t1 + t2 + t3
return self._mixture_variance
@property
def mixture_covariance_matrix(self) -> Tensor:
r"""The posterior covariance matrix for the mixture of models."""
if self._mixture_covariance_matrix is None:
num_mcmc_samples = self.mean.shape[MCMC_DIM]
t1 = self._covariance_matrix.sum(dim=MCMC_DIM) / num_mcmc_samples
mean_diff = self._mean - self.mixture_mean.unsqueeze(MCMC_DIM)
t2 = (
torch.matmul(mean_diff, mean_diff.transpose(-1, -2)).sum(dim=MCMC_DIM)
/ num_mcmc_samples
)
self._mixture_covariance_matrix = t1 + t2
return self._mixture_covariance_matrix
[docs]
def quantile(self, value: Tensor) -> Tensor:
r"""Compute the posterior quantiles for the mixture of models."""
return _quantile(posterior=self, value=value)
@property
def batch_range(self) -> tuple[int, int]:
r"""The t-batch range.
This is used in samplers to identify the t-batch component of the
`base_sample_shape`. The base samples are expanded over the t-batches to
provide consistency in the acquisition values, i.e., to ensure that a
candidate produces same value regardless of its position on the t-batch.
"""
return (0, -2) if self._is_mt else (0, -1)
[docs]
class FullyBayesianPosterior(GaussianMixturePosterior):
"""For backwards compatibility."""
def __init__(self, distribution: MultivariateNormal) -> None:
"""DEPRECATED."""
warn(
"`FullyBayesianPosterior` is marked for deprecation, consider using "
"`GaussianMixturePosterior` instead.",
DeprecationWarning,
)
super().__init__(distribution=distribution)