Source code for botorch.optim.optimize

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Methods for optimizing acquisition functions.
"""

from __future__ import annotations

import dataclasses
import warnings
from typing import Any, Callable, Optional, Union

import torch
from botorch.acquisition.acquisition import (
    AcquisitionFunction,
    OneShotAcquisitionFunction,
)
from botorch.acquisition.knowledge_gradient import qKnowledgeGradient
from botorch.acquisition.multi_objective.hypervolume_knowledge_gradient import (
    qHypervolumeKnowledgeGradient,
)
from botorch.exceptions import InputDataError, UnsupportedError
from botorch.exceptions.warnings import OptimizationWarning
from botorch.generation.gen import gen_candidates_scipy, TGenCandidates
from botorch.logging import logger
from botorch.optim.initializers import (
    gen_batch_initial_conditions,
    gen_one_shot_hvkg_initial_conditions,
    gen_one_shot_kg_initial_conditions,
    TGenInitialConditions,
)
from botorch.optim.stopping import ExpMAStoppingCriterion
from torch import Tensor

INIT_OPTION_KEYS = {
    # set of options for initialization that we should
    # not pass to scipy.optimize.minimize to avoid
    # warnings
    "alpha",
    "batch_limit",
    "eta",
    "init_batch_limit",
    "nonnegative",
    "n_burnin",
    "sample_around_best",
    "sample_around_best_sigma",
    "sample_around_best_prob_perturb",
    "seed",
    "thinning",
}


[docs] @dataclasses.dataclass(frozen=True) class OptimizeAcqfInputs: """ Container for inputs to `optimize_acqf`. See docstring for `optimize_acqf` for explanation of parameters. """ acq_function: AcquisitionFunction bounds: Tensor q: int num_restarts: int raw_samples: Optional[int] options: Optional[dict[str, Union[bool, float, int, str]]] inequality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] equality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] nonlinear_inequality_constraints: Optional[list[tuple[Callable, bool]]] fixed_features: Optional[dict[int, float]] post_processing_func: Optional[Callable[[Tensor], Tensor]] batch_initial_conditions: Optional[Tensor] return_best_only: bool gen_candidates: TGenCandidates sequential: bool ic_generator: Optional[TGenInitialConditions] = None timeout_sec: Optional[float] = None return_full_tree: bool = False retry_on_optimization_warning: bool = True ic_gen_kwargs: dict = dataclasses.field(default_factory=dict) @property def full_tree(self) -> bool: return self.return_full_tree or ( not isinstance(self.acq_function, OneShotAcquisitionFunction) ) def __post_init__(self) -> None: if self.inequality_constraints is None and not ( self.bounds.ndim == 2 and self.bounds.shape[0] == 2 ): raise ValueError( "bounds should be a `2 x d` tensor, current shape: " f"{list(self.bounds.shape)}." ) d = self.bounds.shape[1] if self.batch_initial_conditions is not None: batch_initial_conditions_shape = self.batch_initial_conditions.shape if len(batch_initial_conditions_shape) not in (2, 3): raise ValueError( "batch_initial_conditions must be 2-dimensional or " "3-dimensional. Its shape is " f"{batch_initial_conditions_shape}." ) if batch_initial_conditions_shape[-1] != d: raise ValueError( f"batch_initial_conditions.shape[-1] must be {d}. The " f"shape is {batch_initial_conditions_shape}." ) elif self.ic_generator is None: if self.nonlinear_inequality_constraints is not None: raise RuntimeError( "`ic_generator` must be given if " "there are non-linear inequality constraints." ) if self.raw_samples is None: raise ValueError( "Must specify `raw_samples` when " "`batch_initial_conditions` is None`." )
[docs] def get_ic_generator(self) -> TGenInitialConditions: if self.ic_generator is not None: return self.ic_generator elif isinstance(self.acq_function, qKnowledgeGradient): return gen_one_shot_kg_initial_conditions elif isinstance(self.acq_function, qHypervolumeKnowledgeGradient): return gen_one_shot_hvkg_initial_conditions return gen_batch_initial_conditions
def _optimize_acqf_all_features_fixed( *, bounds: Tensor, fixed_features: dict[int, float], q: int, acq_function: AcquisitionFunction, ) -> tuple[Tensor, Tensor]: """ Helper function for `optimize_acqf` for the trivial case where all features are fixed. """ X = torch.tensor( [fixed_features[i] for i in range(bounds.shape[-1])], device=bounds.device, dtype=bounds.dtype, ) X = X.expand(q, *X.shape) with torch.no_grad(): acq_value = acq_function(X) return X, acq_value def _validate_sequential_inputs(opt_inputs: OptimizeAcqfInputs) -> None: # Validate that constraints across the q-dim and # self.sequential are not present together. const_err_message = ( "Inter-point constraints are not supported for sequential optimization. " "But the {}th {} constraint is defined as inter-point." ) if opt_inputs.inequality_constraints is not None: for i, constraint in enumerate(opt_inputs.inequality_constraints): if len(constraint[0].shape) > 1: raise UnsupportedError(const_err_message.format(i, "linear inequality")) if opt_inputs.equality_constraints is not None: for i, constraint in enumerate(opt_inputs.equality_constraints): if len(constraint[0].shape) > 1: raise UnsupportedError(const_err_message.format(i, "linear equality")) if opt_inputs.nonlinear_inequality_constraints is not None: for i, (_, intra_point) in enumerate( opt_inputs.nonlinear_inequality_constraints ): if not intra_point: raise UnsupportedError( const_err_message.format(i, "non-linear inequality") ) # TODO: Validate constraints if provided: # https://github.com/pytorch/botorch/pull/1231 if opt_inputs.batch_initial_conditions is not None: raise UnsupportedError( "`batch_initial_conditions` is not supported for sequential " "optimization. Either avoid specifying " "`batch_initial_conditions` to use the custom initializer or " "use the `ic_generator` kwarg to generate initial conditions " "for the case of nonlinear inequality constraints." ) if not opt_inputs.return_best_only: raise NotImplementedError( "`return_best_only=False` only supported for joint optimization." ) if isinstance(opt_inputs.acq_function, OneShotAcquisitionFunction): raise NotImplementedError( "sequential optimization currently not supported for one-shot " "acquisition functions. Must have `sequential=False`." ) def _optimize_acqf_sequential_q( opt_inputs: OptimizeAcqfInputs, ) -> tuple[Tensor, Tensor]: """ Helper function for `optimize_acqf` when sequential=True and q > 1. For each of `q` times, generate a single candidate greedily, then add it to the list of pending points. """ _validate_sequential_inputs(opt_inputs) # When using sequential optimization, we allocate the total timeout # evenly across the individual acquisition optimizations. timeout_sec = ( opt_inputs.timeout_sec / opt_inputs.q if opt_inputs.timeout_sec is not None else None ) candidate_list, acq_value_list = [], [] base_X_pending = opt_inputs.acq_function.X_pending new_inputs = dataclasses.replace( opt_inputs, q=1, batch_initial_conditions=None, return_best_only=True, sequential=False, timeout_sec=timeout_sec, ) for i in range(opt_inputs.q): candidate, acq_value = _optimize_acqf_batch(new_inputs) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) new_inputs.acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) logger.info(f"Generated sequential candidate {i+1} of {opt_inputs.q}") opt_inputs.acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) def _optimize_acqf_batch(opt_inputs: OptimizeAcqfInputs) -> tuple[Tensor, Tensor]: options = opt_inputs.options or {} initial_conditions_provided = opt_inputs.batch_initial_conditions is not None if initial_conditions_provided: batch_initial_conditions = opt_inputs.batch_initial_conditions else: # pyre-ignore[28]: Unexpected keyword argument `acq_function` to anonymous call. batch_initial_conditions = opt_inputs.get_ic_generator()( acq_function=opt_inputs.acq_function, bounds=opt_inputs.bounds, q=opt_inputs.q, num_restarts=opt_inputs.num_restarts, raw_samples=opt_inputs.raw_samples, fixed_features=opt_inputs.fixed_features, options=options, inequality_constraints=opt_inputs.inequality_constraints, equality_constraints=opt_inputs.equality_constraints, **opt_inputs.ic_gen_kwargs, ) batch_limit: int = options.get( "batch_limit", ( opt_inputs.num_restarts if not opt_inputs.nonlinear_inequality_constraints else 1 ), ) def _optimize_batch_candidates() -> tuple[Tensor, Tensor, list[Warning]]: batch_candidates_list: list[Tensor] = [] batch_acq_values_list: list[Tensor] = [] batched_ics = batch_initial_conditions.split(batch_limit) opt_warnings = [] timeout_sec = ( opt_inputs.timeout_sec / len(batched_ics) if opt_inputs.timeout_sec is not None else None ) bounds = opt_inputs.bounds gen_kwargs: dict[str, Any] = { "lower_bounds": None if bounds[0].isinf().all() else bounds[0], "upper_bounds": None if bounds[1].isinf().all() else bounds[1], "options": {k: v for k, v in options.items() if k not in INIT_OPTION_KEYS}, "fixed_features": opt_inputs.fixed_features, "timeout_sec": timeout_sec, } for constraint_name in [ "inequality_constraints", "equality_constraints", "nonlinear_inequality_constraints", ]: if (constraint := getattr(opt_inputs, constraint_name)) is not None: gen_kwargs[constraint_name] = constraint for i, batched_ics_ in enumerate(batched_ics): # optimize using random restart optimization with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always", category=OptimizationWarning) ( batch_candidates_curr, batch_acq_values_curr, ) = opt_inputs.gen_candidates( batched_ics_, opt_inputs.acq_function, **gen_kwargs ) opt_warnings += ws batch_candidates_list.append(batch_candidates_curr) batch_acq_values_list.append(batch_acq_values_curr) logger.info(f"Generated candidate batch {i+1} of {len(batched_ics)}.") batch_candidates = torch.cat(batch_candidates_list) has_scalars = batch_acq_values_list[0].ndim == 0 if has_scalars: batch_acq_values = torch.stack(batch_acq_values_list) else: batch_acq_values = torch.cat(batch_acq_values_list).flatten() return batch_candidates, batch_acq_values, opt_warnings batch_candidates, batch_acq_values, ws = _optimize_batch_candidates() optimization_warning_raised = any( (issubclass(w.category, OptimizationWarning) for w in ws) ) if optimization_warning_raised and opt_inputs.retry_on_optimization_warning: first_warn_msg = ( "Optimization failed in `gen_candidates_scipy` with the following " f"warning(s):\n{[w.message for w in ws]}\nBecause you specified " "`batch_initial_conditions`, optimization will not be retried with " "new initial conditions and will proceed with the current solution." " Suggested remediation: Try again with different " "`batch_initial_conditions`, or don't provide `batch_initial_conditions.`" if initial_conditions_provided else "Optimization failed in `gen_candidates_scipy` with the following " f"warning(s):\n{[w.message for w in ws]}\nTrying again with a new " "set of initial conditions." ) warnings.warn(first_warn_msg, RuntimeWarning, stacklevel=2) if not initial_conditions_provided: batch_initial_conditions = opt_inputs.get_ic_generator()( acq_function=opt_inputs.acq_function, bounds=opt_inputs.bounds, q=opt_inputs.q, num_restarts=opt_inputs.num_restarts, raw_samples=opt_inputs.raw_samples, fixed_features=opt_inputs.fixed_features, options=options, inequality_constraints=opt_inputs.inequality_constraints, equality_constraints=opt_inputs.equality_constraints, **opt_inputs.ic_gen_kwargs, ) batch_candidates, batch_acq_values, ws = _optimize_batch_candidates() optimization_warning_raised = any( (issubclass(w.category, OptimizationWarning) for w in ws) ) if optimization_warning_raised: warnings.warn( "Optimization failed on the second try, after generating a " "new set of initial conditions.", RuntimeWarning, stacklevel=2, ) if opt_inputs.post_processing_func is not None: batch_candidates = opt_inputs.post_processing_func(batch_candidates) with torch.no_grad(): acq_values_list = [ opt_inputs.acq_function(cand) for cand in batch_candidates.split(batch_limit, dim=0) ] batch_acq_values = torch.cat(acq_values_list, dim=0) if opt_inputs.return_best_only: best = torch.argmax(batch_acq_values.view(-1), dim=0) batch_candidates = batch_candidates[best] batch_acq_values = batch_acq_values[best] if not opt_inputs.full_tree: batch_candidates = opt_inputs.acq_function.extract_candidates( X_full=batch_candidates ) return batch_candidates, batch_acq_values
[docs] def optimize_acqf( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[list[tuple[Callable, bool]]] = None, fixed_features: Optional[dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, return_best_only: bool = True, gen_candidates: Optional[TGenCandidates] = None, sequential: bool = False, *, ic_generator: Optional[TGenInitialConditions] = None, timeout_sec: Optional[float] = None, return_full_tree: bool = False, retry_on_optimization_warning: bool = True, **ic_gen_kwargs: Any, ) -> tuple[Tensor, Tensor]: r"""Generate a set of candidates via multi-start optimization. Args: acq_function: An AcquisitionFunction. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. `indices` and `coefficients` should be torch tensors. See the docstring of `make_scipy_linear_constraints` for an example. When q=1, or when applying the same constraint to each candidate in the batch (intra-point constraint), `indices` should be a 1-d tensor. For inter-point constraints, in which the constraint is applied to the whole batch of candidates, `indices` must be a 2-d tensor, where in each row `indices[i] =(k_i, l_i)` the first index `k_i` corresponds to the `k_i`-th element of the `q`-batch and the second index `l_i` corresponds to the `l_i`-th feature of that element. equality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. See the docstring of `make_scipy_linear_constraints` for an example. nonlinear_inequality_constraints: A list of tuples representing the nonlinear inequality constraints. The first element in the tuple is a callable representing a constraint of the form `callable(x) >= 0`. In case of an intra-point constraint, `callable()`takes in an one-dimensional tensor of shape `d` and returns a scalar. In case of an inter-point constraint, `callable()` takes a two dimensional tensor of shape `q x d` and again returns a scalar. The second element is a boolean, indicating if it is an intra-point or inter-point constraint (`True` for intra-point. `False` for inter-point). For more information on intra-point vs inter-point constraints, see the docstring of the `inequality_constraints` argument to `optimize_acqf()`. The constraints will later be passed to the scipy solver. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. return_best_only: If False, outputs the solutions corresponding to all random restart initializations of the optimization. gen_candidates: A callable for generating candidates (and their associated acquisition values) given a tensor of initial conditions and an acquisition function. Other common inputs include lower and upper bounds and a dictionary of options, but refer to the documentation of specific generation functions (e.g gen_candidates_scipy and gen_candidates_torch) for method-specific inputs. Default: `gen_candidates_scipy` sequential: If False, uses joint optimization, otherwise uses sequential optimization. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. timeout_sec: Max amount of time optimization can run for. return_full_tree: retry_on_optimization_warning: Whether to retry candidate generation with a new set of initial conditions when it fails with an `OptimizationWarning`. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - A tensor of generated candidates. The shape is -- `q x d` if `return_best_only` is True (default) -- `num_restarts x q x d` if `return_best_only` is False - a tensor of associated acquisition values. If `sequential=False`, this is a `(num_restarts)`-dim tensor of joint acquisition values (with explicit restart dimension if `return_best_only=False`). If `sequential=True`, this is a `q`-dim tensor of expected acquisition values conditional on having observed candidates `0,1,...,i-1`. Example: >>> # generate `q=2` candidates jointly using 20 random restarts >>> # and 512 raw samples >>> candidates, acq_value = optimize_acqf(qEI, bounds, 2, 20, 512) >>> generate `q=3` candidates sequentially using 15 random restarts >>> # and 256 raw samples >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf( >>> qEI, bounds, 3, 15, 256, sequential=True >>> ) """ # using a default of None simplifies unit testing if gen_candidates is None: gen_candidates = gen_candidates_scipy opt_acqf_inputs = OptimizeAcqfInputs( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=return_best_only, gen_candidates=gen_candidates, sequential=sequential, ic_generator=ic_generator, timeout_sec=timeout_sec, return_full_tree=return_full_tree, retry_on_optimization_warning=retry_on_optimization_warning, ic_gen_kwargs=ic_gen_kwargs, ) return _optimize_acqf(opt_acqf_inputs)
def _optimize_acqf(opt_inputs: OptimizeAcqfInputs) -> tuple[Tensor, Tensor]: # Handle the trivial case when all features are fixed if ( opt_inputs.fixed_features is not None and len(opt_inputs.fixed_features) == opt_inputs.bounds.shape[-1] ): return _optimize_acqf_all_features_fixed( bounds=opt_inputs.bounds, fixed_features=opt_inputs.fixed_features, q=opt_inputs.q, acq_function=opt_inputs.acq_function, ) # Perform sequential optimization via successive conditioning on pending points if opt_inputs.sequential and opt_inputs.q > 1: return _optimize_acqf_sequential_q(opt_inputs=opt_inputs) # Batch optimization (including the case q=1) return _optimize_acqf_batch(opt_inputs=opt_inputs)
[docs] def optimize_acqf_cyclic( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, cyclic_options: Optional[dict[str, Union[bool, float, int, str]]] = None, *, ic_generator: Optional[TGenInitialConditions] = None, timeout_sec: Optional[float] = None, return_full_tree: bool = False, retry_on_optimization_warning: bool = True, **ic_gen_kwargs: Any, ) -> tuple[Tensor, Tensor]: r"""Generate a set of `q` candidates via cyclic optimization. Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. If no initial conditions are provided, the default initialization will be used. cyclic_options: Options for stopping criterion for outer cyclic optimization. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. timeout_sec: Max amount of time optimization can run for. return_full_tree: retry_on_optimization_warning: Whether to retry candidate generation with a new set of initial conditions when it fails with an `OptimizationWarning`. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. Example: >>> # generate `q=3` candidates cyclically using 15 random restarts >>> # 256 raw samples, and 4 cycles >>> >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf_cyclic( >>> qEI, bounds, 3, 15, 256, cyclic_options={"maxiter": 4} >>> ) """ opt_inputs = OptimizeAcqfInputs( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=None, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, gen_candidates=gen_candidates_scipy, sequential=True, ic_generator=ic_generator, timeout_sec=timeout_sec, return_full_tree=return_full_tree, retry_on_optimization_warning=retry_on_optimization_warning, ic_gen_kwargs=ic_gen_kwargs, ) # for the first cycle, optimize the q candidates sequentially candidates, acq_vals = _optimize_acqf(opt_inputs) q = opt_inputs.q opt_inputs = dataclasses.replace(opt_inputs, q=1) acq_function = opt_inputs.acq_function if q > 1: cyclic_options = cyclic_options or {} stopping_criterion = ExpMAStoppingCriterion(**cyclic_options) stop = stopping_criterion.evaluate(fvals=acq_vals) base_X_pending = acq_function.X_pending idxr = torch.ones(q, dtype=torch.bool, device=opt_inputs.bounds.device) while not stop: for i in range(q): # optimize only candidate i idxr[i] = 0 acq_function.set_X_pending( torch.cat([base_X_pending, candidates[idxr]], dim=-2) if base_X_pending is not None else candidates[idxr] ) opt_inputs = dataclasses.replace( opt_inputs, batch_initial_conditions=candidates[i].unsqueeze(0), sequential=False, ) candidate_i, acq_val_i = _optimize_acqf(opt_inputs) candidates[i] = candidate_i acq_vals[i] = acq_val_i idxr[i] = 1 stop = stopping_criterion.evaluate(fvals=acq_vals) acq_function.set_X_pending(base_X_pending) return candidates, acq_vals
[docs] def optimize_acqf_list( acq_function_list: list[AcquisitionFunction], bounds: Tensor, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[list[tuple[Callable, bool]]] = None, fixed_features: Optional[dict[int, float]] = None, fixed_features_list: Optional[list[dict[int, float]]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, ic_generator: Optional[TGenInitialConditions] = None, ic_gen_kwargs: Optional[dict] = None, ) -> tuple[Tensor, Tensor]: r"""Generate a list of candidates from a list of acquisition functions. The acquisition functions are optimized in sequence, with previous candidates set as `X_pending`. This is also known as sequential greedy optimization. Args: acq_function_list: A list of acquisition functions. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` nonlinear_inequality_constraints: A list of tuples representing the nonlinear inequality constraints. The first element in the tuple is a callable representing a constraint of the form `callable(x) >= 0`. In case of an intra-point constraint, `callable()`takes in an one-dimensional tensor of shape `d` and returns a scalar. In case of an inter-point constraint, `callable()` takes a two dimensional tensor of shape `q x d` and again returns a scalar. The second element is a boolean, indicating if it is an intra-point or inter-point constraint (`True` for intra-point. `False` for inter-point). For more information on intra-point vs inter-point constraints, see the docstring of the `inequality_constraints` argument to `optimize_acqf()`. The constraints will later be passed to the scipy solver. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. fixed_features_list: A list of maps `{feature_index: value}`. The i-th item represents the fixed_feature for the i-th optimization. If `fixed_features_list` is provided, `optimize_acqf_mixed` is invoked. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. """ if fixed_features and fixed_features_list: raise ValueError( "Èither `fixed_feature` or `fixed_features_list` can be provided, not both." ) if not acq_function_list: raise ValueError("acq_function_list must be non-empty.") candidate_list, acq_value_list = [], [] candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) base_X_pending = acq_function_list[0].X_pending for acq_function in acq_function_list: if candidate_list: acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) if fixed_features_list: candidate, acq_value = optimize_acqf_mixed( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features_list=fixed_features_list, post_processing_func=post_processing_func, ic_generator=ic_generator, ic_gen_kwargs=ic_gen_kwargs, ) else: ic_gen_kwargs = ic_gen_kwargs or {} candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, return_best_only=True, sequential=False, ic_generator=ic_generator, **ic_gen_kwargs, ) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) return candidates, torch.stack(acq_value_list)
[docs] def optimize_acqf_mixed( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, fixed_features_list: list[dict[int, float]], raw_samples: Optional[int] = None, options: Optional[dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[list[tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[list[tuple[Callable, bool]]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, ic_generator: Optional[TGenInitialConditions] = None, ic_gen_kwargs: Optional[dict] = None, ) -> tuple[Tensor, Tensor]: r"""Optimize over a list of fixed_features and returns the best solution. This is useful for optimizing over mixed continuous and discrete domains. For q > 1 this function always performs sequential greedy optimization (with proper conditioning on generated candidates). Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. fixed_features_list: A list of maps `{feature_index: value}`. The i-th item represents the fixed_feature for the i-th optimization. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` nonlinear_inequality_constraints: A list of tuples representing the nonlinear inequality constraints. The first element in the tuple is a callable representing a constraint of the form `callable(x) >= 0`. In case of an intra-point constraint, `callable()`takes in an one-dimensional tensor of shape `d` and returns a scalar. In case of an inter-point constraint, `callable()` takes a two dimensional tensor of shape `q x d` and again returns a scalar. The second element is a boolean, indicating if it is an intra-point or inter-point constraint (`True` for intra-point. `False` for inter-point). For more information on intra-point vs inter-point constraints, see the docstring of the `inequality_constraints` argument to `optimize_acqf()`. The constraints will later be passed to the scipy solver. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ if not fixed_features_list: raise ValueError("fixed_features_list must be non-empty.") if isinstance(acq_function, OneShotAcquisitionFunction): if not hasattr(acq_function, "evaluate") and q > 1: raise ValueError( "`OneShotAcquisitionFunction`s that do not implement `evaluate` " "are currently not supported when `q > 1`. This is needed to " "compute the joint acquisition value." ) ic_gen_kwargs = ic_gen_kwargs or {} if q == 1: ff_candidate_list, ff_acq_value_list = [], [] for fixed_features in fixed_features_list: candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, ic_generator=ic_generator, return_best_only=True, **ic_gen_kwargs, ) ff_candidate_list.append(candidate) ff_acq_value_list.append(acq_value) ff_acq_values = torch.stack(ff_acq_value_list) best = torch.argmax(ff_acq_values) return ff_candidate_list[best], ff_acq_values[best] # For batch optimization with q > 1 we do not want to enumerate all n_combos^n # possible combinations of discrete choices. Instead, we use sequential greedy # optimization. base_X_pending = acq_function.X_pending candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) for _ in range(q): candidate, acq_value = optimize_acqf_mixed( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features_list=fixed_features_list, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, ic_generator=ic_generator, ic_gen_kwargs=ic_gen_kwargs, ) candidates = torch.cat([candidates, candidate], dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) acq_function.set_X_pending(base_X_pending) # compute joint acquisition value if isinstance(acq_function, OneShotAcquisitionFunction): acq_value = acq_function.evaluate(X=candidates, bounds=bounds) else: acq_value = acq_function(candidates) return candidates, acq_value
[docs] def optimize_acqf_discrete( acq_function: AcquisitionFunction, q: int, choices: Tensor, max_batch_size: int = 2048, unique: bool = True, ) -> tuple[Tensor, Tensor]: r"""Optimize over a discrete set of points using batch evaluation. For `q > 1` this function generates candidates by means of sequential conditioning (rather than joint optimization), since for all but the smalles number of choices the set `choices^q` of discrete points to evaluate quickly explodes. Args: acq_function: An AcquisitionFunction. q: The number of candidates. choices: A `num_choices x d` tensor of possible choices. max_batch_size: The maximum number of choices to evaluate in batch. A large limit can cause excessive memory usage if the model has a large training set. unique: If True return unique choices, o/w choices may be repeated (only relevant if `q > 1`). Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ if isinstance(acq_function, OneShotAcquisitionFunction): raise UnsupportedError( "Discrete optimization is not supported for" "one-shot acquisition functions." ) if choices.numel() == 0: raise InputDataError("`choices` must be non-emtpy.") choices_batched = choices.unsqueeze(-2) if q > 1: candidate_list, acq_value_list = [], [] base_X_pending = acq_function.X_pending for _ in range(q): with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size, ) best_idx = torch.argmax(acq_values) candidate_list.append(choices_batched[best_idx]) acq_value_list.append(acq_values[best_idx]) # set pending points candidates = torch.cat(candidate_list, dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # need to remove choice from choice set if enforcing uniqueness if unique: choices_batched = torch.cat( [choices_batched[:best_idx], choices_batched[best_idx + 1 :]] ) # Reset acq_func to previous X_pending state acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size ) best_idx = torch.argmax(acq_values) return choices_batched[best_idx], acq_values[best_idx]
def _split_batch_eval_acqf( acq_function: AcquisitionFunction, X: Tensor, max_batch_size: int ) -> Tensor: return torch.cat([acq_function(X_) for X_ in X.split(max_batch_size)]) def _generate_neighbors( x: Tensor, discrete_choices: list[Tensor], X_avoid: Tensor, inequality_constraints: list[tuple[Tensor, Tensor, float]], ): # generate all 1D perturbations npts = sum([len(c) for c in discrete_choices]) X_loc = x.repeat(npts, 1) j = 0 for i, c in enumerate(discrete_choices): X_loc[j : j + len(c), i] = c j += len(c) # remove invalid and infeasible points (also remove x) X_loc = _filter_invalid(X=X_loc, X_avoid=torch.cat((X_avoid, x))) X_loc = _filter_infeasible(X=X_loc, inequality_constraints=inequality_constraints) return X_loc def _filter_infeasible( X: Tensor, inequality_constraints: list[tuple[Tensor, Tensor, float]] ): """Remove all points from `X` that don't satisfy the constraints.""" is_feasible = torch.ones(X.shape[0], dtype=torch.bool, device=X.device) for inds, weights, bound in inequality_constraints: is_feasible &= (X[..., inds] * weights).sum(dim=-1) >= bound return X[is_feasible] def _filter_invalid(X: Tensor, X_avoid: Tensor): """Remove all occurences of `X_avoid` from `X`.""" return X[~(X == X_avoid.unsqueeze(-2)).all(dim=-1).any(dim=-2)] def _gen_batch_initial_conditions_local_search( discrete_choices: list[Tensor], raw_samples: int, X_avoid: Tensor, inequality_constraints: list[tuple[Tensor, Tensor, float]], min_points: int, max_tries: int = 100, ): """Generate initial conditions for local search.""" device = discrete_choices[0].device dtype = discrete_choices[0].dtype dim = len(discrete_choices) X = torch.zeros(0, dim, device=device, dtype=dtype) for _ in range(max_tries): X_new = torch.zeros(raw_samples, dim, device=device, dtype=dtype) for i, c in enumerate(discrete_choices): X_new[:, i] = c[ torch.randint(low=0, high=len(c), size=(raw_samples,), device=c.device) ] X = torch.unique(torch.cat((X, X_new)), dim=0) X = _filter_invalid(X=X, X_avoid=X_avoid) X = _filter_infeasible(X=X, inequality_constraints=inequality_constraints) if len(X) >= min_points: return X raise RuntimeError(f"Failed to generate at least {min_points} initial conditions")