#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""Tools for model fitting."""
from __future__ import annotations
from collections.abc import Sequence
from functools import partial
from typing import Any, Callable, Optional, Union
from warnings import warn
from botorch.exceptions.warnings import OptimizationWarning
from botorch.optim.closures import get_loss_closure_with_grads
from botorch.optim.core import (
OptimizationResult,
OptimizationStatus,
scipy_minimize,
torch_minimize,
)
from botorch.optim.stopping import ExpMAStoppingCriterion
from botorch.optim.utils import get_parameters_and_bounds, TorchAttr
from botorch.utils.types import DEFAULT
from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood
from numpy import ndarray
from torch import Tensor
from torch.nn import Module
from torch.optim.adam import Adam
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
TBoundsDict = dict[str, tuple[Optional[float], Optional[float]]]
TScipyObjective = Callable[
[ndarray, MarginalLogLikelihood, dict[str, TorchAttr]], tuple[float, ndarray]
]
TModToArray = Callable[
[Module, Optional[TBoundsDict], Optional[set[str]]],
tuple[ndarray, dict[str, TorchAttr], Optional[ndarray]],
]
TArrayToMod = Callable[[Module, ndarray, dict[str, TorchAttr]], Module]
[docs]
def fit_gpytorch_mll_scipy(
mll: MarginalLogLikelihood,
parameters: Optional[dict[str, Tensor]] = None,
bounds: Optional[dict[str, tuple[Optional[float], Optional[float]]]] = None,
closure: Optional[Callable[[], tuple[Tensor, Sequence[Optional[Tensor]]]]] = None,
closure_kwargs: Optional[dict[str, Any]] = None,
method: str = "L-BFGS-B",
options: Optional[dict[str, Any]] = None,
callback: Optional[Callable[[dict[str, Tensor], OptimizationResult], None]] = None,
timeout_sec: Optional[float] = None,
) -> OptimizationResult:
r"""Generic scipy.optimized-based fitting routine for GPyTorch MLLs.
The model and likelihood in mll must already be in train mode.
Args:
mll: MarginalLogLikelihood to be maximized.
parameters: Optional dictionary of parameters to be optimized. Defaults
to all parameters of `mll` that require gradients.
bounds: A dictionary of user-specified bounds for `parameters`. Used to update
default parameter bounds obtained from `mll`.
closure: Callable that returns a tensor and an iterable of gradient tensors.
Responsible for setting the `grad` attributes of `parameters`. If no closure
is provided, one will be obtained by calling `get_loss_closure_with_grads`.
closure_kwargs: Keyword arguments passed to `closure`.
method: Solver type, passed along to scipy.minimize.
options: Dictionary of solver options, passed along to scipy.minimize.
callback: Optional callback taking `parameters` and an OptimizationResult as its
sole arguments.
timeout_sec: Timeout in seconds after which to terminate the fitting loop
(note that timing out can result in bad fits!).
Returns:
The final OptimizationResult.
"""
# Resolve `parameters` and update default bounds
_parameters, _bounds = get_parameters_and_bounds(mll)
bounds = _bounds if bounds is None else {**_bounds, **bounds}
if parameters is None:
parameters = {n: p for n, p in _parameters.items() if p.requires_grad}
if closure is None:
closure = get_loss_closure_with_grads(mll, parameters=parameters)
if closure_kwargs is not None:
closure = partial(closure, **closure_kwargs)
result = scipy_minimize(
closure=closure,
parameters=parameters,
bounds=bounds,
method=method,
options=options,
callback=callback,
timeout_sec=timeout_sec,
)
if result.status != OptimizationStatus.SUCCESS:
warn(
f"`scipy_minimize` terminated with status {result.status}, displaying"
f" original message from `scipy.optimize.minimize`: {result.message}",
OptimizationWarning,
)
return result
[docs]
def fit_gpytorch_mll_torch(
mll: MarginalLogLikelihood,
parameters: Optional[dict[str, Tensor]] = None,
bounds: Optional[dict[str, tuple[Optional[float], Optional[float]]]] = None,
closure: Optional[Callable[[], tuple[Tensor, Sequence[Optional[Tensor]]]]] = None,
closure_kwargs: Optional[dict[str, Any]] = None,
step_limit: Optional[int] = None,
stopping_criterion: Optional[Callable[[Tensor], bool]] = DEFAULT, # pyre-ignore [9]
optimizer: Union[Optimizer, Callable[..., Optimizer]] = Adam,
scheduler: Optional[Union[_LRScheduler, Callable[..., _LRScheduler]]] = None,
callback: Optional[Callable[[dict[str, Tensor], OptimizationResult], None]] = None,
timeout_sec: Optional[float] = None,
) -> OptimizationResult:
r"""Generic torch.optim-based fitting routine for GPyTorch MLLs.
Args:
mll: MarginalLogLikelihood to be maximized.
parameters: Optional dictionary of parameters to be optimized. Defaults
to all parameters of `mll` that require gradients.
bounds: A dictionary of user-specified bounds for `parameters`. Used to update
default parameter bounds obtained from `mll`.
closure: Callable that returns a tensor and an iterable of gradient tensors.
Responsible for setting the `grad` attributes of `parameters`. If no closure
is provided, one will be obtained by calling `get_loss_closure_with_grads`.
closure_kwargs: Keyword arguments passed to `closure`.
step_limit: Optional upper bound on the number of optimization steps.
stopping_criterion: A StoppingCriterion for the optimization loop.
optimizer: A `torch.optim.Optimizer` instance or a factory that takes
a list of parameters and returns an `Optimizer` instance.
scheduler: A `torch.optim.lr_scheduler._LRScheduler` instance or a factory
that takes an `Optimizer` instance and returns an `_LRSchedule`.
callback: Optional callback taking `parameters` and an OptimizationResult as its
sole arguments.
timeout_sec: Timeout in seconds after which to terminate the fitting loop
(note that timing out can result in bad fits!).
Returns:
The final OptimizationResult.
"""
if stopping_criterion == DEFAULT:
stopping_criterion = ExpMAStoppingCriterion()
# Resolve `parameters` and update default bounds
param_dict, bounds_dict = get_parameters_and_bounds(mll)
if parameters is None:
parameters = {n: p for n, p in param_dict.items() if p.requires_grad}
if closure is None:
closure = get_loss_closure_with_grads(mll, parameters)
if closure_kwargs is not None:
closure = partial(closure, **closure_kwargs)
return torch_minimize(
closure=closure,
parameters=parameters,
bounds=bounds_dict if bounds is None else {**bounds_dict, **bounds},
optimizer=optimizer,
scheduler=scheduler,
step_limit=step_limit,
stopping_criterion=stopping_criterion,
callback=callback,
timeout_sec=timeout_sec,
)