Source code for botorch.models.contextual
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Optional
from botorch.models.gp_regression import SingleTaskGP
from botorch.models.kernels.contextual_lcea import LCEAKernel
from botorch.models.kernels.contextual_sac import SACKernel
from botorch.utils.datasets import SupervisedDataset
from torch import Tensor
[docs]
class SACGP(SingleTaskGP):
r"""A GP using a Structural Additive Contextual(SAC) kernel."""
def __init__(
self,
train_X: Tensor,
train_Y: Tensor,
train_Yvar: Optional[Tensor],
decomposition: dict[str, list[int]],
) -> None:
r"""
Args:
train_X: (n x d) X training data.
train_Y: (n x 1) Y training data.
train_Yvar: (n x 1) Noise variances of each training Y. If None,
we use an inferred noise likelihood.
decomposition: Keys are context names. Values are the indexes of
parameters belong to the context. The parameter indexes are in
the same order across contexts.
"""
super().__init__(train_X=train_X, train_Y=train_Y, train_Yvar=train_Yvar)
self.covar_module = SACKernel(
decomposition=decomposition,
batch_shape=self._aug_batch_shape,
device=train_X.device,
)
self.decomposition = decomposition
self.to(train_X)
[docs]
@classmethod
def construct_inputs(
cls,
training_data: SupervisedDataset,
decomposition: dict[str, list[int]],
) -> dict[str, Any]:
r"""Construct `Model` keyword arguments from a dict of `SupervisedDataset`.
Args:
training_data: A `SupervisedDataset` containing the training data.
decomposition: Dictionary of context names and their indexes of the
corresponding active context parameters.
"""
base_inputs = super().construct_inputs(training_data=training_data)
return {
**base_inputs,
"decomposition": decomposition,
}
[docs]
class LCEAGP(SingleTaskGP):
r"""A GP using a Latent Context Embedding Additive (LCE-A) Kernel.
Note that the model does not support batch training. Input training
data sets should have dim = 2.
"""
def __init__(
self,
train_X: Tensor,
train_Y: Tensor,
train_Yvar: Optional[Tensor],
decomposition: dict[str, list[int]],
train_embedding: bool = True,
cat_feature_dict: Optional[dict] = None,
embs_feature_dict: Optional[dict] = None,
embs_dim_list: Optional[list[int]] = None,
context_weight_dict: Optional[dict] = None,
) -> None:
r"""
Args:
train_X: (n x d) X training data.
train_Y: (n x 1) Y training data.
train_Yvar: (n x 1) Noise variance of Y. If None,
we use an inferred noise likelihood.
decomposition: Keys are context names. Values are the indexes of
parameters belong to the context.
train_embedding: Whether to train the embedding layer or not. If False,
the model will use pre-trained embeddings in embs_feature_dict.
cat_feature_dict: Keys are context names and values are list of categorical
features i.e. {"context_name" : [cat_0, ..., cat_k]}, where k is the
number of categorical variables. If None, we use context names in the
decomposition as the only categorical feature, i.e., k = 1.
embs_feature_dict: Pre-trained continuous embedding features of each
context.
embs_dim_list: Embedding dimension for each categorical variable. The length
equals the number of categorical features k. If None, the embedding
dimension is set to 1 for each categorical variable.
context_weight_dict: Known population weights of each context.
"""
super().__init__(
train_X=train_X,
train_Y=train_Y,
train_Yvar=train_Yvar,
outcome_transform=None,
)
self.covar_module = LCEAKernel(
decomposition=decomposition,
batch_shape=self._aug_batch_shape,
train_embedding=train_embedding,
cat_feature_dict=cat_feature_dict,
embs_feature_dict=embs_feature_dict,
embs_dim_list=embs_dim_list,
context_weight_dict=context_weight_dict,
device=train_X.device,
)
self.decomposition = decomposition
self.to(train_X)
[docs]
@classmethod
def construct_inputs(
cls,
training_data: SupervisedDataset,
decomposition: dict[str, list[str]],
train_embedding: bool = True,
cat_feature_dict: Optional[dict] = None,
embs_feature_dict: Optional[dict] = None,
embs_dim_list: Optional[list[int]] = None,
context_weight_dict: Optional[dict] = None,
) -> dict[str, Any]:
r"""Construct `Model` keyword arguments from a dict of `SupervisedDataset`.
Args:
training_data: A `SupervisedDataset` containing the training data.
decomposition: Dictionary of context names and the names of the
corresponding active context parameters.
train_embedding: Whether to train the embedding layer or not.
cat_feature_dict: Keys are context names and values are list of categorical
features i.e. {"context_name" : [cat_0, ..., cat_k]}, where k is the
number of categorical variables. If None, we use context names in the
decomposition as the only categorical feature, i.e., k = 1.
embs_feature_dict: Pre-trained continuous embedding features of each
context.
embs_dim_list: Embedding dimension for each categorical variable. The length
equals the number of categorical features k. If None, the embedding
dimension is set to 1 for each categorical variable.
context_weight_dict: Known population weights of each context.
"""
base_inputs = super().construct_inputs(training_data=training_data)
index_decomp = {
c: [training_data.feature_names.index(i) for i in v]
for c, v in decomposition.items()
}
return {
**base_inputs,
"decomposition": index_decomp,
"train_embedding": train_embedding,
"cat_feature_dict": cat_feature_dict,
"embs_feature_dict": embs_feature_dict,
"embs_dim_list": embs_dim_list,
"context_weight_dict": context_weight_dict,
}