#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Helpers for handling objectives.
"""
from __future__ import annotations
from collections.abc import Callable
import torch
from botorch.utils.safe_math import log_fatmoid, logexpit
from botorch.utils.transforms import normalize_indices
from torch import Tensor
[docs]
def apply_constraints_nonnegative_soft(
obj: Tensor,
constraints: list[Callable[[Tensor], Tensor]],
samples: Tensor,
eta: Tensor | float,
) -> Tensor:
r"""Applies constraints to a non-negative objective.
This function uses a sigmoid approximation to an indicator function for
each constraint.
Args:
obj: A `n_samples x b x q (x m')`-dim Tensor of objective values.
constraints: A list of callables, each mapping a Tensor of size `b x q x m`
to a Tensor of size `b x q`, where negative values imply feasibility.
This callable must support broadcasting. Only relevant for multi-
output models (`m` > 1).
samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior.
eta: The temperature parameter for the sigmoid function. Can be either a float
or a 1-dim tensor. In case of a float the same eta is used for every
constraint in constraints. In case of a tensor the length of the tensor
must match the number of provided constraints. The i-th constraint is
then estimated with the i-th eta value.
Returns:
A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives.
"""
w = compute_smoothed_feasibility_indicator(
constraints=constraints, samples=samples, eta=eta
)
if obj.dim() == samples.dim():
w = w.unsqueeze(-1) # Need to unsqueeze to accommodate the outcome dimension.
return obj.clamp_min(0).mul(w) # Enforce non-negativity of obj, apply constraints.
[docs]
def compute_feasibility_indicator(
constraints: list[Callable[[Tensor], Tensor]] | None,
samples: Tensor,
marginalize_dim: int | None = None,
) -> Tensor:
r"""Computes the feasibility of a list of constraints given posterior samples.
Args:
constraints: A list of callables, each mapping a batch_shape x q x m`-dim Tensor
to a `batch_shape x q`-dim Tensor, where negative values imply feasibility.
samples: A batch_shape x q x m`-dim Tensor of posterior samples.
marginalize_dim: A batch dimension that should be marginalized.
For example, this is useful when using a batched fully Bayesian
model.
Returns:
A `batch_shape x q`-dim tensor of Boolean feasibility values.
"""
ind = torch.ones(samples.shape[:-1], dtype=torch.bool, device=samples.device)
if constraints is not None:
for constraint in constraints:
ind = ind.logical_and(constraint(samples) <= 0)
if ind.ndim >= 3 and marginalize_dim is not None:
# make sure marginalize_dim is not negative
if marginalize_dim < 0:
# add 1 to the normalize marginalize_dim since we have already
# removed the output dim
marginalize_dim = 1 + normalize_indices([marginalize_dim], d=ind.ndim)[0]
ind = ind.float().mean(dim=marginalize_dim).round().bool()
return ind
[docs]
def compute_smoothed_feasibility_indicator(
constraints: list[Callable[[Tensor], Tensor]],
samples: Tensor,
eta: Tensor | float,
log: bool = False,
fat: bool = False,
) -> Tensor:
r"""Computes the smoothed feasibility indicator of a list of constraints.
Given posterior samples, using a sigmoid to smoothly approximate the feasibility
indicator of each individual constraint to ensure differentiability and high
gradient signal. The `fat` and `log` options improve the numerical behavior of
the smooth approximation.
NOTE: *Negative* constraint values are associated with feasibility.
Args:
constraints: A list of callables, each mapping a Tensor of size `b x q x m`
to a Tensor of size `b x q`, where negative values imply feasibility.
This callable must support broadcasting. Only relevant for multi-
output models (`m` > 1).
samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior.
eta: The temperature parameter for the sigmoid function. Can be either a float
or a 1-dim tensor. In case of a float the same eta is used for every
constraint in constraints. In case of a tensor the length of the tensor
must match the number of provided constraints. The i-th constraint is
then estimated with the i-th eta value.
log: Toggles the computation of the log-feasibility indicator.
fat: Toggles the computation of the fat-tailed feasibility indicator.
Returns:
A `n_samples x b x q`-dim tensor of feasibility indicator values.
"""
if type(eta) is not Tensor:
eta = torch.full((len(constraints),), eta)
if len(eta) != len(constraints):
raise ValueError(
"Number of provided constraints and number of provided etas do not match."
)
if not (eta > 0).all():
raise ValueError("eta must be positive.")
is_feasible = torch.zeros_like(samples[..., 0])
log_sigmoid = log_fatmoid if fat else logexpit
for constraint, e in zip(constraints, eta):
is_feasible = is_feasible + log_sigmoid(-constraint(samples) / e)
return is_feasible if log else is_feasible.exp()
[docs]
def apply_constraints(
obj: Tensor,
constraints: list[Callable[[Tensor], Tensor]],
samples: Tensor,
infeasible_cost: float,
eta: Tensor | float = 1e-3,
) -> Tensor:
r"""Apply constraints using an infeasible_cost `M` for negative objectives.
This allows feasibility-weighting an objective for the case where the
objective can be negative by using the following strategy:
(1) Add `M` to make obj non-negative;
(2) Apply constraints using the sigmoid approximation;
(3) Shift by `-M`.
Args:
obj: A `n_samples x b x q (x m')`-dim Tensor of objective values.
constraints: A list of callables, each mapping a Tensor of size `b x q x m`
to a Tensor of size `b x q`, where negative values imply feasibility.
This callable must support broadcasting. Only relevant for multi-
output models (`m` > 1).
samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior.
infeasible_cost: The infeasible value.
eta: The temperature parameter of the sigmoid function. Can be either a float
or a 1-dim tensor. In case of a float the same eta is used for every
constraint in constraints. In case of a tensor the length of the tensor
must match the number of provided constraints. The i-th constraint is
then estimated with the i-th eta value.
Returns:
A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives.
"""
# obj has dimensions n_samples x b x q (x m')
obj = obj.add(infeasible_cost) # now it is nonnegative
obj = apply_constraints_nonnegative_soft(
obj=obj,
constraints=constraints,
samples=samples,
eta=eta,
)
return obj.add(-infeasible_cost)