Source code for botorch.test_functions.base

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Base class for test functions for optimization benchmarks.
"""

from __future__ import annotations

from abc import ABC, abstractmethod

import torch
from botorch.exceptions.errors import InputDataError
from torch import Tensor
from torch.nn import Module


[docs] class BaseTestProblem(Module, ABC): r"""Base class for test functions.""" dim: int _bounds: list[tuple[float, float]] _check_grad_at_opt: bool = True def __init__( self, noise_std: None | float | list[float] = None, negate: bool = False, dtype: torch.dtype = torch.double, ) -> None: r"""Base constructor for test functions. Args: noise_std: Standard deviation of the observation noise. If a list is provided, specifies separate noise standard deviations for each objective in a multiobjective problem. negate: If True, negate the function. dtype: The dtype that is used for the bounds of the function. """ super().__init__() self.noise_std = noise_std self.negate = negate if len(self._bounds) != self.dim: raise InputDataError( "Expected the bounds to match the dimensionality of the domain. " f"Got {self.dim=} and {len(self._bounds)=}." ) self.register_buffer( "bounds", torch.tensor(self._bounds, dtype=dtype).transpose(-1, -2), )
[docs] def forward(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the function on a set of points. Args: X: A `(batch_shape) x d`-dim tensor of point(s) at which to evaluate the function. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape`-dim tensor ouf function evaluations. """ f = self.evaluate_true(X=X) if noise and self.noise_std is not None: _noise = torch.tensor(self.noise_std, device=X.device, dtype=X.dtype) f += _noise * torch.randn_like(f) if self.negate: f = -f return f
[docs] @abstractmethod def evaluate_true(self, X: Tensor) -> Tensor: r""" Evaluate the function (w/o observation noise) on a set of points. Args: X: A `(batch_shape) x d`-dim tensor of point(s) at which to evaluate. Returns: A `batch_shape`-dim tensor. """ pass # pragma: no cover
[docs] class ConstrainedBaseTestProblem(BaseTestProblem, ABC): r"""Base class for test functions with constraints. In addition to one or more objectives, a problem may have a number of outcome constraints of the form `c_i(x) >= 0` for `i=1, ..., n_c`. This base class provides common functionality for such problems. """ num_constraints: int _check_grad_at_opt: bool = False constraint_noise_std: None | float | list[float] = None
[docs] def evaluate_slack(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the constraint slack on a set of points. Constraints `i` is assumed to be feasible at `x` if the associated slack `c_i(x)` is positive. Zero slack means that the constraint is active. Negative slack means that the constraint is violated. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraint slacks: `c_1(X), ...., c_{n_c}(X)`. noise: If `True`, add observation noise to the slack as specified by `noise_std`. Returns: A `batch_shape x n_c`-dim tensor of constraint slack (where positive slack corresponds to the constraint being feasible). """ cons = self.evaluate_slack_true(X=X) if noise and self.constraint_noise_std is not None: _constraint_noise = torch.tensor( self.constraint_noise_std, device=X.device, dtype=X.dtype ) cons += _constraint_noise * torch.randn_like(cons) return cons
[docs] def is_feasible(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate whether the constraints are feasible on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraints. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape`-dim boolean tensor that is `True` iff all constraint slacks (potentially including observation noise) are positive. """ return (self.evaluate_slack(X=X, noise=noise) >= 0.0).all(dim=-1)
[docs] @abstractmethod def evaluate_slack_true(self, X: Tensor) -> Tensor: r"""Evaluate the constraint slack (w/o observation noise) on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraint slacks: `c_1(X), ...., c_{n_c}(X)`. Returns: A `batch_shape x n_c`-dim tensor of constraint slack (where positive slack corresponds to the constraint being feasible). """ pass # pragma: no cover
[docs] class MultiObjectiveTestProblem(BaseTestProblem, ABC): r"""Base class for multi-objective test functions. TODO: add a pareto distance function that returns the distance between a provided point and the closest point on the true pareto front. """ num_objectives: int _ref_point: list[float] _max_hv: float | None = None def __init__( self, noise_std: None | float | list[float] = None, negate: bool = False, dtype: torch.dtype = torch.double, ) -> None: r"""Base constructor for multi-objective test functions. Args: noise_std: Standard deviation of the observation noise. If a list is provided, specifies separate noise standard deviations for each objective. negate: If True, negate the objectives. """ if isinstance(noise_std, list) and len(noise_std) != len(self._ref_point): raise InputDataError( f"If specified as a list, length of noise_std ({len(noise_std)}) " f"must match the number of objectives ({len(self._ref_point)})" ) super().__init__(noise_std=noise_std, negate=negate, dtype=dtype) ref_point = torch.tensor(self._ref_point, dtype=dtype) if negate: ref_point *= -1 self.register_buffer("ref_point", ref_point) @property def max_hv(self) -> float: if self._max_hv is not None: return self._max_hv else: raise NotImplementedError( f"Problem {self.__class__.__name__} does not specify maximal " "hypervolume." )
[docs] def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points.""" raise NotImplementedError