Source code for botorch.sampling.pathwise.features.generators

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
.. [rahimi2007random]
    A. Rahimi and B. Recht. Random features for large-scale kernel machines.
    Advances in Neural Information Processing Systems 20 (2007).

.. [sutherland2015error]
    D. J. Sutherland and J. Schneider. On the error of random Fourier features.
    arXiv preprint arXiv:1506.02785 (2015).
"""

from __future__ import annotations

from collections.abc import Callable

from typing import Any

import torch
from botorch.exceptions.errors import UnsupportedError
from botorch.sampling.pathwise.features.maps import KernelFeatureMap
from botorch.sampling.pathwise.utils import (
    ChainedTransform,
    FeatureSelector,
    InverseLengthscaleTransform,
    OutputscaleTransform,
    SineCosineTransform,
)
from botorch.utils.dispatcher import Dispatcher
from botorch.utils.sampling import draw_sobol_normal_samples
from gpytorch import kernels
from gpytorch.kernels.kernel import Kernel
from torch import Size, Tensor
from torch.distributions import Gamma

TKernelFeatureMapGenerator = Callable[[Kernel, int, int], KernelFeatureMap]
GenKernelFeatures = Dispatcher("gen_kernel_features")


[docs] def gen_kernel_features( kernel: kernels.Kernel, num_inputs: int, num_outputs: int, **kwargs: Any, ) -> KernelFeatureMap: r"""Generates a feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^{n}` such that :math:`k(x, x') ≈ \phi(x)^{T} \phi(x')`. For stationary kernels :math:`k`, defaults to the method of random Fourier features. For more details, see [rahimi2007random]_ and [sutherland2015error]_. Args: kernel: The kernel :math:`k` to be represented via a finite-dim basis. num_inputs: The number of input features. num_outputs: The number of kernel features. """ return GenKernelFeatures( kernel, num_inputs=num_inputs, num_outputs=num_outputs, **kwargs, )
def _gen_fourier_features( kernel: kernels.Kernel, weight_generator: Callable[[Size], Tensor], num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: r"""Generate a feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^{2l}` that approximates a stationary kernel so that :math:`k(x, x') ≈ \phi(x)^\top \phi(x')`. Following [sutherland2015error]_, we represent complex exponentials by pairs of basis functions :math:`\phi_{i}(x) = \sin(x^\top w_{i})` and :math:`\phi_{i + l} = \cos(x^\top w_{i}). Args: kernel: A stationary kernel :math:`k(x, x') = k(x - x')`. weight_generator: A callable used to generate weight vectors :math:`w`. num_inputs: The number of input features. num_outputs: The number of Fourier features. """ if num_outputs % 2: raise UnsupportedError( f"Expected an even number of output features, but received {num_outputs=}." ) input_transform = InverseLengthscaleTransform(kernel) if kernel.active_dims is not None: num_inputs = len(kernel.active_dims) input_transform = ChainedTransform( input_transform, FeatureSelector(indices=kernel.active_dims) ) weight = weight_generator( Size([kernel.batch_shape.numel() * num_outputs // 2, num_inputs]) ).reshape(*kernel.batch_shape, num_outputs // 2, num_inputs) output_transform = SineCosineTransform( torch.tensor((2 / num_outputs) ** 0.5, device=kernel.device, dtype=kernel.dtype) ) return KernelFeatureMap( kernel=kernel, weight=weight, input_transform=input_transform, output_transform=output_transform, ) @GenKernelFeatures.register(kernels.RBFKernel) def _gen_kernel_features_rbf( kernel: kernels.RBFKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: def _weight_generator(shape: Size) -> Tensor: try: n, d = shape except ValueError: raise UnsupportedError( f"Expected `shape` to be 2-dimensional, but {len(shape)=}." ) return draw_sobol_normal_samples( n=n, d=d, device=kernel.lengthscale.device, dtype=kernel.lengthscale.dtype, ) return _gen_fourier_features( kernel=kernel, weight_generator=_weight_generator, num_inputs=num_inputs, num_outputs=num_outputs, ) @GenKernelFeatures.register(kernels.MaternKernel) def _gen_kernel_features_matern( kernel: kernels.MaternKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: def _weight_generator(shape: Size) -> Tensor: try: n, d = shape except ValueError: raise UnsupportedError( f"Expected `shape` to be 2-dimensional, but {len(shape)=}." ) dtype = kernel.lengthscale.dtype device = kernel.lengthscale.device nu = torch.tensor(kernel.nu, device=device, dtype=dtype) normals = draw_sobol_normal_samples(n=n, d=d, device=device, dtype=dtype) return Gamma(nu, nu).rsample((n, 1)).rsqrt() * normals return _gen_fourier_features( kernel=kernel, weight_generator=_weight_generator, num_inputs=num_inputs, num_outputs=num_outputs, ) @GenKernelFeatures.register(kernels.ScaleKernel) def _gen_kernel_features_scale( kernel: kernels.ScaleKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: active_dims = kernel.active_dims feature_map = gen_kernel_features( kernel.base_kernel, num_inputs=num_inputs if active_dims is None else len(active_dims), num_outputs=num_outputs, ) if active_dims is not None and active_dims is not kernel.base_kernel.active_dims: feature_map.input_transform = ChainedTransform( feature_map.input_transform, FeatureSelector(indices=active_dims) ) feature_map.output_transform = ChainedTransform( OutputscaleTransform(kernel), feature_map.output_transform ) return feature_map