Source code for botorch.posteriors.transformed
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from collections.abc import Callable
import torch
from botorch.posteriors.posterior import Posterior
from torch import Tensor
[docs]
class TransformedPosterior(Posterior):
r"""A generic transformation of a posterior (implicitly represented)."""
def __init__(
self,
posterior: Posterior,
sample_transform: Callable[[Tensor], Tensor],
mean_transform: Callable[[Tensor, Tensor], Tensor] | None = None,
variance_transform: Callable[[Tensor, Tensor], Tensor] | None = None,
) -> None:
r"""An implicitly represented transformed posterior.
Args:
posterior: The posterior object to be transformed.
sample_transform: A callable applying a sample-level transform to a
`sample_shape x batch_shape x q x m`-dim tensor of samples from
the original posterior, returning a tensor of samples of the
same shape.
mean_transform: A callable transforming a 2-tuple of mean and
variance (both of shape `batch_shape x m x o`) of the original
posterior to the mean of the transformed posterior.
variance_transform: A callable transforming a 2-tuple of mean and
variance (both of shape `batch_shape x m x o`) of the original
posterior to a variance of the transformed posterior.
"""
self._posterior = posterior
self._sample_transform = sample_transform
self._mean_transform = mean_transform
self._variance_transform = variance_transform
@property
def base_sample_shape(self) -> torch.Size:
r"""The shape of a base sample used for constructing posterior samples."""
return self._posterior.base_sample_shape
@property
def batch_range(self) -> tuple[int, int]:
r"""The t-batch range.
This is used in samplers to identify the t-batch component of the
`base_sample_shape`. The base samples are expanded over the t-batches to
provide consistency in the acquisition values, i.e., to ensure that a
candidate produces same value regardless of its position on the t-batch.
"""
return self._posterior.batch_range
@property
def device(self) -> torch.device:
r"""The torch device of the posterior."""
return self._posterior.device
@property
def dtype(self) -> torch.dtype:
r"""The torch dtype of the posterior."""
return self._posterior.dtype
def _extended_shape(
self,
sample_shape: torch.Size = torch.Size(), # noqa: B008
) -> torch.Size:
r"""Returns the shape of the samples produced by the posterior with
the given `sample_shape`.
NOTE: This assumes that the `sample_transform` does not change the
shape of the samples.
"""
return self._posterior._extended_shape(sample_shape=sample_shape)
@property
def mean(self) -> Tensor:
r"""The mean of the posterior as a `batch_shape x n x m`-dim Tensor."""
if self._mean_transform is None:
raise NotImplementedError("No mean transform provided.")
try:
variance = self._posterior.variance
except (NotImplementedError, AttributeError):
variance = None
return self._mean_transform(self._posterior.mean, variance)
@property
def variance(self) -> Tensor:
r"""The variance of the posterior as a `batch_shape x n x m`-dim Tensor."""
if self._variance_transform is None:
raise NotImplementedError("No variance transform provided.")
return self._variance_transform(self._posterior.mean, self._posterior.variance)
[docs]
def rsample_from_base_samples(
self,
sample_shape: torch.Size,
base_samples: Tensor,
) -> Tensor:
r"""Sample from the posterior (with gradients) using base samples.
This is intended to be used with a sampler that produces the corresponding base
samples, and enables acquisition optimization via Sample Average Approximation.
Args:
sample_shape: A `torch.Size` object specifying the sample shape. To
draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
of `n` samples each, set to `torch.Size([b, n])`.
base_samples: The base samples, obtained from the appropriate sampler.
This is a tensor of shape `sample_shape x base_sample_shape`.
Returns:
Samples from the posterior, a tensor of shape
`self._extended_shape(sample_shape=sample_shape)`.
"""
samples = self._posterior.rsample_from_base_samples(
sample_shape=sample_shape, base_samples=base_samples
)
return self._sample_transform(samples)
[docs]
def rsample(
self,
sample_shape: torch.Size | None = None,
) -> Tensor:
r"""Sample from the posterior (with gradients).
Args:
sample_shape: A `torch.Size` object specifying the sample shape. To
draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
of `n` samples each, set to `torch.Size([b, n])`.
Returns:
Samples from the posterior, a tensor of shape
`self._extended_shape(sample_shape=sample_shape)`.
"""
samples = self._posterior.rsample(sample_shape=sample_shape)
return self._sample_transform(samples)