Source code for botorch.acquisition.factory

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Utilities for acquisition functions.
"""

from __future__ import annotations

from collections.abc import Callable

import torch

from botorch.acquisition import logei, monte_carlo
from botorch.acquisition.multi_objective import (
    logei as moo_logei,
    monte_carlo as moo_monte_carlo,
)
from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform
from botorch.acquisition.utils import compute_best_feasible_objective
from botorch.models.model import Model
from botorch.sampling.get_sampler import get_sampler
from botorch.utils.multi_objective.box_decompositions.non_dominated import (
    FastNondominatedPartitioning,
    NondominatedPartitioning,
)
from torch import Tensor


[docs] def get_acquisition_function( acquisition_function_name: str, model: Model, objective: MCAcquisitionObjective, X_observed: Tensor, posterior_transform: PosteriorTransform | None = None, X_pending: Tensor | None = None, constraints: list[Callable[[Tensor], Tensor]] | None = None, eta: Tensor | float | None = 1e-3, mc_samples: int = 512, seed: int | None = None, *, # optional parameters that are only needed for certain acquisition functions tau: float = 1e-3, prune_baseline: bool = True, marginalize_dim: int | None = None, cache_root: bool = True, beta: float | None = None, ref_point: None | list[float] | Tensor = None, Y: Tensor | None = None, alpha: float = 0.0, ) -> monte_carlo.MCAcquisitionFunction: r"""Convenience function for initializing botorch acquisition functions. Args: acquisition_function_name: Name of the acquisition function. model: A fitted model. objective: A MCAcquisitionObjective. X_observed: A `m1 x d`-dim Tensor of `m1` design points that have already been observed. posterior_transform: A PosteriorTransform (optional). X_pending: A `m2 x d`-dim Tensor of `m2` design points whose evaluation is pending. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. Used for all acquisition functions except qSR and qUCB. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Used for all acquisition functions except qSR and qUCB. mc_samples: The number of samples to use for (q)MC evaluation of the acquisition function. seed: If provided, perform deterministic optimization (i.e. the function to optimize is fixed and not stochastic). Returns: The requested acquisition function. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> obj = LinearMCObjective(weights=torch.tensor([1.0, 2.0])) >>> acqf = get_acquisition_function("qEI", model, obj, train_X) """ # initialize the sampler sampler = get_sampler( posterior=model.posterior(X_observed[:1]), sample_shape=torch.Size([mc_samples]), seed=seed, ) if posterior_transform is not None and acquisition_function_name in [ "qEHVI", "qNEHVI", "qLogEHVI", "qLogNEHVI", ]: raise NotImplementedError( "PosteriorTransforms are not yet implemented for multi-objective " "acquisition functions." ) # instantiate and return the requested acquisition function if acquisition_function_name in ("qEI", "qLogEI", "qPI"): # Since these are the non-noisy variants, use the posterior mean at the observed # inputs directly to compute the best feasible value without sampling. Y = model.posterior(X_observed, posterior_transform=posterior_transform).mean obj = objective(samples=Y, X=X_observed) best_f = compute_best_feasible_objective( samples=Y, obj=obj, constraints=constraints, model=model, objective=objective, posterior_transform=posterior_transform, X_baseline=X_observed, ) if acquisition_function_name in ["qEI", "qLogEI"]: acqf_class = ( monte_carlo.qExpectedImprovement if acquisition_function_name == "qEI" else logei.qLogExpectedImprovement ) return acqf_class( model=model, best_f=best_f, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qPI": return monte_carlo.qProbabilityOfImprovement( model=model, best_f=best_f, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, tau=tau, constraints=constraints, eta=eta, ) elif acquisition_function_name in ["qNEI", "qLogNEI"]: acqf_class = ( monte_carlo.qNoisyExpectedImprovement if acquisition_function_name == "qNEI" else logei.qLogNoisyExpectedImprovement ) return acqf_class( model=model, X_baseline=X_observed, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, prune_baseline=prune_baseline, marginalize_dim=marginalize_dim, cache_root=cache_root, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qSR": return monte_carlo.qSimpleRegret( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) elif acquisition_function_name == "qUCB": if beta is None: raise ValueError("`beta` must be not be None for qUCB.") return monte_carlo.qUpperConfidenceBound( model=model, beta=beta, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) elif acquisition_function_name in ["qEHVI", "qLogEHVI"]: if Y is None: raise ValueError(f"`Y` must not be None for {acquisition_function_name}") if ref_point is None: raise ValueError( f"`ref_point` must not be None for {acquisition_function_name}" ) # get feasible points if constraints is not None: feas = torch.stack([c(Y) <= 0 for c in constraints], dim=-1).all(dim=-1) Y = Y[feas] obj = objective(Y) if alpha > 0: partitioning = NondominatedPartitioning( ref_point=torch.as_tensor(ref_point, dtype=Y.dtype, device=Y.device), Y=obj, alpha=alpha, ) else: partitioning = FastNondominatedPartitioning( ref_point=torch.as_tensor(ref_point, dtype=Y.dtype, device=Y.device), Y=obj, ) acqf_class = ( moo_monte_carlo.qExpectedHypervolumeImprovement if acquisition_function_name == "qEHVI" else moo_logei.qLogExpectedHypervolumeImprovement ) return acqf_class( model=model, ref_point=ref_point, partitioning=partitioning, sampler=sampler, objective=objective, constraints=constraints, eta=eta, X_pending=X_pending, ) elif acquisition_function_name in ["qNEHVI", "qLogNEHVI"]: if ref_point is None: raise ValueError( f"`ref_point` must not be None for {acquisition_function_name}" ) acqf_class = ( moo_monte_carlo.qNoisyExpectedHypervolumeImprovement if acquisition_function_name == "qNEHVI" else moo_logei.qLogNoisyExpectedHypervolumeImprovement ) return acqf_class( model=model, ref_point=ref_point, X_baseline=X_observed, sampler=sampler, objective=objective, constraints=constraints, eta=eta, prune_baseline=prune_baseline, alpha=alpha, X_pending=X_pending, marginalize_dim=marginalize_dim, cache_root=cache_root, ) raise NotImplementedError( f"Unknown acquisition function {acquisition_function_name}" )