Source code for botorch.posteriors.posterior_list
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Abstract base module for all botorch posteriors.
"""
from __future__ import annotations
from functools import cached_property
from typing import Any, List, Optional
import torch
from botorch.posteriors.fully_bayesian import GaussianMixturePosterior, MCMC_DIM
from botorch.posteriors.posterior import Posterior
from torch import Tensor
[docs]
class PosteriorList(Posterior):
r"""A Posterior represented by a list of independent Posteriors.
When at least one of the posteriors is a `GaussianMixturePosterior`, the other
posteriors are expanded to match the size of the `GaussianMixturePosterior`.
"""
def __init__(self, *posteriors: Posterior) -> None:
r"""A Posterior represented by a list of independent Posteriors.
Args:
*posteriors: A variable number of single-outcome posteriors.
Example:
>>> p_1 = model_1.posterior(test_X)
>>> p_2 = model_2.posterior(test_X)
>>> p_12 = PosteriorList(p_1, p_2)
Note: This is typically produced automatically in `ModelList`; it should
generally not be necessary for the end user to invoke it manually.
"""
self.posteriors = list(posteriors)
@cached_property
def _is_gaussian_mixture(self) -> bool:
r"""Check if any of the posteriors is a `GaussianMixturePosterior`."""
return any(isinstance(p, GaussianMixturePosterior) for p in self.posteriors)
def _get_mcmc_batch_dimension(self) -> int:
"""Return the number of MCMC samples in the corresponding batch dimension."""
mcmc_samples = [
p.mean.shape[MCMC_DIM]
for p in self.posteriors
if isinstance(p, GaussianMixturePosterior)
]
if len(set(mcmc_samples)) > 1:
raise NotImplementedError(
"All MCMC batch dimensions must have the same size, got shapes: "
f"{mcmc_samples}."
)
return mcmc_samples[0]
@staticmethod
def _reshape_tensor(X: Tensor, mcmc_samples: int) -> Tensor:
"""Reshape a tensor without an MCMC batch dimension to match the shape."""
X = X.unsqueeze(MCMC_DIM)
return X.expand(*X.shape[:MCMC_DIM], mcmc_samples, *X.shape[MCMC_DIM + 1 :])
def _reshape_and_cat(self, tensors: List[Tensor]):
r"""Reshape, if needed, and concatenate (across dim=-1) a list of tensors."""
if self._is_gaussian_mixture:
mcmc_samples = self._get_mcmc_batch_dimension()
return torch.cat(
[
x
if isinstance(p, GaussianMixturePosterior)
else self._reshape_tensor(x, mcmc_samples=mcmc_samples)
for x, p in zip(tensors, self.posteriors)
],
dim=-1,
)
else:
return torch.cat(tensors, dim=-1)
@property
def device(self) -> torch.device:
r"""The torch device of the posterior."""
devices = {p.device for p in self.posteriors}
if len(devices) > 1:
raise NotImplementedError( # pragma: no cover
"Multi-device posteriors are currently not supported. "
"The devices of the constituent posteriors are: {devices}."
)
return next(iter(devices))
@property
def dtype(self) -> torch.dtype:
r"""The torch dtype of the posterior."""
dtypes = {p.dtype for p in self.posteriors}
if len(dtypes) > 1:
raise NotImplementedError(
"Multi-dtype posteriors are currently not supported. "
"The dtypes of the constituent posteriors are: {dtypes}."
)
return next(iter(dtypes))
def _extended_shape(
self, sample_shape: torch.Size = torch.Size() # noqa: B008
) -> torch.Size:
r"""Returns the shape of the samples produced by the posterior with
the given `sample_shape`.
If there's at least one `GaussianMixturePosterior`, the MCMC dimension
is included the `_extended_shape`.
"""
if self._is_gaussian_mixture:
mcmc_shape = torch.Size([self._get_mcmc_batch_dimension()])
extend_dim = MCMC_DIM + 1 # The dimension to inject MCMC shape.
extended_shapes = []
for p in self.posteriors:
es = p._extended_shape(sample_shape=sample_shape)
if self._is_gaussian_mixture and not isinstance(
p, GaussianMixturePosterior
):
# Extend the shapes of non-fully Bayesian ones to match.
extended_shapes.append(es[:extend_dim] + mcmc_shape + es[extend_dim:])
else:
extended_shapes.append(es)
batch_shapes = [es[:-1] for es in extended_shapes]
if len(set(batch_shapes)) > 1:
raise NotImplementedError(
"`PosteriorList` is only supported if the constituent posteriors "
f"all have the same `batch_shape`. Batch shapes: {batch_shapes}."
)
# Last dimension is the output dimension (concatenation dimension).
return batch_shapes[0] + torch.Size([sum(es[-1] for es in extended_shapes)])
@property
def mean(self) -> Tensor:
r"""The mean of the posterior as a `(b) x n x m`-dim Tensor.
This is only supported if all posteriors provide a mean.
"""
return self._reshape_and_cat(tensors=[p.mean for p in self.posteriors])
@property
def variance(self) -> Tensor:
r"""The variance of the posterior as a `(b) x n x m`-dim Tensor.
This is only supported if all posteriors provide a variance.
"""
return self._reshape_and_cat(tensors=[p.variance for p in self.posteriors])
[docs]
def rsample(
self,
sample_shape: Optional[torch.Size] = None,
) -> Tensor:
r"""Sample from the posterior (with gradients).
Args:
sample_shape: A `torch.Size` object specifying the sample shape. To
draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
of `n` samples each, set to `torch.Size([b, n])`.
base_samples: An (optional) Tensor of `N(0, I)` base samples of
appropriate dimension, typically obtained from a `Sampler`.
This is used for deterministic optimization. Deprecated.
Returns:
Samples from the posterior, a tensor of shape
`self._extended_shape(sample_shape=sample_shape)`.
"""
samples = [p.rsample(sample_shape=sample_shape) for p in self.posteriors]
return self._reshape_and_cat(tensors=samples)
def __getattr__(self, name: str) -> Any:
r"""A catch-all for attributes not defined on the posterior level.
Raises an attribute error.
"""
raise AttributeError(
f"`PosteriorList` does not define the attribute {name}. "
"Consider accessing the attributes of the individual posteriors instead."
)