Source code for botorch.sampling.pathwise.features.maps
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional, Union
import torch
from botorch.sampling.pathwise.utils import (
TInputTransform,
TOutputTransform,
TransformedModuleMixin,
)
from gpytorch.kernels import Kernel
from linear_operator.operators import LinearOperator
from torch import Size, Tensor
from torch.nn import Module
[docs]class FeatureMap(TransformedModuleMixin, Module):
num_outputs: int
batch_shape: Size
input_transform: Optional[TInputTransform]
output_transform: Optional[TOutputTransform]
[docs]class KernelEvaluationMap(FeatureMap):
r"""A feature map defined by centering a kernel at a set of points."""
def __init__(
self,
kernel: Kernel,
points: Tensor,
input_transform: Optional[TInputTransform] = None,
output_transform: Optional[TOutputTransform] = None,
) -> None:
r"""Initializes a KernelEvaluationMap instance:
.. code-block:: text
feature_map(x) = output_transform(kernel(input_transform(x), points)).
Args:
kernel: The kernel :math:`k` used to define the feature map.
points: A tensor passed as the kernel's second argument.
input_transform: An optional input transform for the module.
output_transform: An optional output transform for the module.
"""
try:
torch.broadcast_shapes(points.shape[:-2], kernel.batch_shape)
except RuntimeError:
raise RuntimeError(
f"Shape mismatch: {points.shape=}, but {kernel.batch_shape=}."
)
super().__init__()
self.kernel = kernel
self.points = points
self.input_transform = input_transform
self.output_transform = output_transform
[docs] def forward(self, x: Tensor) -> Union[Tensor, LinearOperator]:
return self.kernel(x, self.points)
@property
def num_outputs(self) -> int:
if self.output_transform is None:
return self.points.shape[-1]
canary = torch.empty(
1, self.points.shape[-1], device=self.points.device, dtype=self.points.dtype
)
return self.output_transform(canary).shape[-1]
@property
def batch_shape(self) -> Size:
return self.kernel.batch_shape
[docs]class KernelFeatureMap(FeatureMap):
r"""Representation of a kernel :math:`k: \mathcal{X}^2 \to \mathbb{R}` as an
n-dimensional feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^n` satisfying:
:math:`k(x, x') ≈ \phi(x)^\top \phi(x')`.
"""
def __init__(
self,
kernel: Kernel,
weight: Tensor,
bias: Optional[Tensor] = None,
input_transform: Optional[TInputTransform] = None,
output_transform: Optional[TOutputTransform] = None,
) -> None:
r"""Initializes a KernelFeatureMap instance:
.. code-block:: text
feature_map(x) = output_transform(input_transform(x)^{T} weight + bias).
Args:
kernel: The kernel :math:`k` used to define the feature map.
weight: A tensor of weights used to linearly combine the module's inputs.
bias: A tensor of biases to be added to the linearly combined inputs.
input_transform: An optional input transform for the module.
output_transform: An optional output transform for the module.
"""
super().__init__()
self.kernel = kernel
self.register_buffer("weight", weight)
self.register_buffer("bias", bias)
self.weight = weight
self.bias = bias
self.input_transform = input_transform
self.output_transform = output_transform
[docs] def forward(self, x: Tensor) -> Tensor:
out = x @ self.weight.transpose(-2, -1)
return out if self.bias is None else out + self.bias
@property
def num_outputs(self) -> int:
if self.output_transform is None:
return self.weight.shape[-2]
canary = torch.empty(
self.weight.shape[-2], device=self.weight.device, dtype=self.weight.dtype
)
return self.output_transform(canary).shape[-1]
@property
def batch_shape(self) -> Size:
return self.kernel.batch_shape