Source code for botorch.utils.objective

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Helpers for handling objectives.
"""

from __future__ import annotations

import warnings

from typing import Callable, List, Optional, Union

import torch
from botorch.utils.safe_math import log_fatmoid, logexpit
from torch import Tensor


[docs]def get_objective_weights_transform( weights: Optional[Tensor], ) -> Callable[[Tensor, Optional[Tensor]], Tensor]: r"""Create a linear objective callable from a set of weights. Create a callable mapping a Tensor of size `b x q x m` and an (optional) Tensor of size `b x q x d` to a Tensor of size `b x q`, where `m` is the number of outputs of the model using scalarization via the objective weights. This callable supports broadcasting (e.g. for calling on a tensor of shape `mc_samples x b x q x m`). For `m = 1`, the objective weight is used to determine the optimization direction. Args: weights: a 1-dimensional Tensor containing a weight for each task. If not provided, the identity mapping is used. Returns: Transform function using the objective weights. Example: >>> weights = torch.tensor([0.75, 0.25]) >>> transform = get_objective_weights_transform(weights) """ # if no weights provided, just extract the single output if weights is None: return lambda Y: Y.squeeze(-1) def _objective(Y: Tensor, X: Optional[Tensor] = None): r"""Evaluate objective. Note: einsum multiples Y by weights and sums over the `m`-dimension. Einsum is ~2x faster than using `(Y * weights.view(1, 1, -1)).sum(dim-1)`. Args: Y: A `... x b x q x m` tensor of function values. Returns: A `... x b x q`-dim tensor of objective values. """ return torch.einsum("...m, m", [Y, weights]) return _objective
[docs]def apply_constraints_nonnegative_soft( obj: Tensor, constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, eta: Union[Tensor, float], ) -> Tensor: r"""Applies constraints to a non-negative objective. This function uses a sigmoid approximation to an indicator function for each constraint. Args: obj: A `n_samples x b x q (x m')`-dim Tensor of objective values. constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. eta: The temperature parameter for the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Returns: A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives. """ w = compute_smoothed_feasibility_indicator( constraints=constraints, samples=samples, eta=eta ) if obj.dim() == samples.dim(): w = w.unsqueeze(-1) # Need to unsqueeze to accommodate the outcome dimension. return obj.clamp_min(0).mul(w) # Enforce non-negativity of obj, apply constraints.
[docs]def compute_feasibility_indicator( constraints: Optional[List[Callable[[Tensor], Tensor]]], samples: Tensor, ) -> Tensor: r"""Computes the feasibility of a list of constraints given posterior samples. Args: constraints: A list of callables, each mapping a batch_shape x q x m`-dim Tensor to a `batch_shape x q`-dim Tensor, where negative values imply feasibility. samples: A batch_shape x q x m`-dim Tensor of posterior samples. Returns: A `batch_shape x q`-dim tensor of Boolean feasibility values. """ ind = torch.ones(samples.shape[:-1], dtype=torch.bool, device=samples.device) if constraints is not None: for constraint in constraints: ind = ind.logical_and(constraint(samples) < 0) return ind
[docs]def compute_smoothed_feasibility_indicator( constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, eta: Union[Tensor, float], log: bool = False, fat: bool = False, ) -> Tensor: r"""Computes the smoothed feasibility indicator of a list of constraints. Given posterior samples, using a sigmoid to smoothly approximate the feasibility indicator of each individual constraint to ensure differentiability and high gradient signal. The `fat` and `log` options improve the numerical behavior of the smooth approximation. NOTE: *Negative* constraint values are associated with feasibility. Args: constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. eta: The temperature parameter for the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. log: Toggles the computation of the log-feasibility indicator. fat: Toggles the computation of the fat-tailed feasibility indicator. Returns: A `n_samples x b x q`-dim tensor of feasibility indicator values. """ if type(eta) is not Tensor: eta = torch.full((len(constraints),), eta) if len(eta) != len(constraints): raise ValueError( "Number of provided constraints and number of provided etas do not match." ) if not (eta > 0).all(): raise ValueError("eta must be positive.") is_feasible = torch.zeros_like(samples[..., 0]) log_sigmoid = log_fatmoid if fat else logexpit for constraint, e in zip(constraints, eta): is_feasible = is_feasible + log_sigmoid(-constraint(samples) / e) return is_feasible if log else is_feasible.exp()
# TODO: deprecate this function
[docs]def soft_eval_constraint(lhs: Tensor, eta: float = 1e-3) -> Tensor: r"""Element-wise evaluation of a constraint in a 'soft' fashion `value(x) = 1 / (1 + exp(x / eta))` Args: lhs: The left hand side of the constraint `lhs <= 0`. eta: The temperature parameter of the softmax function. As eta decreases, this approximates the Heaviside step function. Returns: Element-wise 'soft' feasibility indicator of the same shape as `lhs`. For each element `x`, `value(x) -> 0` as `x` becomes positive, and `value(x) -> 1` as x becomes negative. """ warnings.warn( "`soft_eval_constraint` is deprecated. Please consider `torch.utils.sigmoid` " + "with its `fat` and `log` options to compute feasibility indicators.", DeprecationWarning, ) if eta <= 0: raise ValueError("eta must be positive.") return torch.sigmoid(-lhs / eta)
[docs]def apply_constraints( obj: Tensor, constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, infeasible_cost: float, eta: Union[Tensor, float] = 1e-3, ) -> Tensor: r"""Apply constraints using an infeasible_cost `M` for negative objectives. This allows feasibility-weighting an objective for the case where the objective can be negative by using the following strategy: (1) Add `M` to make obj non-negative; (2) Apply constraints using the sigmoid approximation; (3) Shift by `-M`. Args: obj: A `n_samples x b x q (x m')`-dim Tensor of objective values. constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. infeasible_cost: The infeasible value. eta: The temperature parameter of the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Returns: A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives. """ # obj has dimensions n_samples x b x q (x m') obj = obj.add(infeasible_cost) # now it is nonnegative obj = apply_constraints_nonnegative_soft( obj=obj, constraints=constraints, samples=samples, eta=eta, ) return obj.add(-infeasible_cost)