Source code for botorch.acquisition.input_constructors
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
A registry of helpers for generating inputs to acquisition function
constructors programmatically from a consistent input format.
"""
from __future__ import annotations
from typing import (
Any,
Callable,
Dict,
Hashable,
Iterable,
List,
Optional,
Sequence,
Tuple,
Type,
TypeVar,
Union,
)
import torch
from botorch.acquisition.acquisition import AcquisitionFunction
from botorch.acquisition.analytic import (
ConstrainedExpectedImprovement,
ExpectedImprovement,
LogConstrainedExpectedImprovement,
LogExpectedImprovement,
LogNoisyExpectedImprovement,
LogProbabilityOfImprovement,
NoisyExpectedImprovement,
PosteriorMean,
ProbabilityOfImprovement,
UpperConfidenceBound,
)
from botorch.acquisition.cost_aware import InverseCostWeightedUtility
from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction
from botorch.acquisition.joint_entropy_search import qJointEntropySearch
from botorch.acquisition.knowledge_gradient import (
qKnowledgeGradient,
qMultiFidelityKnowledgeGradient,
)
from botorch.acquisition.logei import (
qLogExpectedImprovement,
qLogNoisyExpectedImprovement,
TAU_MAX,
TAU_RELU,
)
from botorch.acquisition.max_value_entropy_search import (
qMaxValueEntropy,
qMultiFidelityMaxValueEntropy,
)
from botorch.acquisition.monte_carlo import (
qExpectedImprovement,
qNoisyExpectedImprovement,
qProbabilityOfImprovement,
qSimpleRegret,
qUpperConfidenceBound,
)
from botorch.acquisition.multi_objective import (
ExpectedHypervolumeImprovement,
MCMultiOutputObjective,
qExpectedHypervolumeImprovement,
qNoisyExpectedHypervolumeImprovement,
)
from botorch.acquisition.multi_objective.objective import (
AnalyticMultiOutputObjective,
IdentityAnalyticMultiOutputObjective,
IdentityMCMultiOutputObjective,
)
from botorch.acquisition.multi_objective.utils import get_default_partitioning_alpha
from botorch.acquisition.objective import (
IdentityMCObjective,
MCAcquisitionObjective,
PosteriorTransform,
)
from botorch.acquisition.preference import AnalyticExpectedUtilityOfBestOption
from botorch.acquisition.risk_measures import RiskMeasureMCObjective
from botorch.acquisition.utils import (
compute_best_feasible_objective,
expand_trace_observations,
get_optimal_samples,
project_to_target_fidelity,
)
from botorch.exceptions.errors import UnsupportedError
from botorch.models.cost import AffineFidelityCostModel
from botorch.models.deterministic import FixedSingleSampleModel
from botorch.models.gpytorch import GPyTorchModel
from botorch.models.model import Model
from botorch.optim.optimize import optimize_acqf
from botorch.sampling.base import MCSampler
from botorch.sampling.normal import IIDNormalSampler, SobolQMCNormalSampler
from botorch.utils.constraints import get_outcome_constraint_transforms
from botorch.utils.containers import BotorchContainer
from botorch.utils.datasets import BotorchDataset, SupervisedDataset
from botorch.utils.multi_objective.box_decompositions.non_dominated import (
FastNondominatedPartitioning,
NondominatedPartitioning,
)
from torch import Tensor
ACQF_INPUT_CONSTRUCTOR_REGISTRY = {}
T = TypeVar("T")
MaybeDict = Union[T, Dict[Hashable, T]]
def _field_is_shared(
datasets: Union[Iterable[BotorchDataset], Dict[Hashable, BotorchDataset]],
fieldname: Hashable,
) -> bool:
r"""Determines whether or not a given field is shared by all datasets."""
if isinstance(datasets, dict):
datasets = datasets.values()
base = None
for dataset in datasets:
if not hasattr(dataset, fieldname):
raise AttributeError(f"{type(dataset)} object has no field `{fieldname}`.")
obj = getattr(dataset, fieldname)
if base is None:
base = obj
elif base != obj:
return False
return True
def _get_dataset_field(
dataset: MaybeDict[BotorchDataset],
fieldname: str,
transform: Optional[Callable[[BotorchContainer], Any]] = None,
join_rule: Optional[Callable[[Sequence[Any]], Any]] = None,
first_only: bool = False,
assert_shared: bool = False,
) -> Any:
r"""Convenience method for extracting a given field from one or more datasets."""
if isinstance(dataset, dict):
if assert_shared and not _field_is_shared(dataset, fieldname):
raise ValueError(f"Field `{fieldname}` must be shared.")
if not first_only:
fields = (
_get_dataset_field(d, fieldname, transform) for d in dataset.values()
)
return join_rule(tuple(fields)) if join_rule else tuple(fields)
dataset = next(iter(dataset.values()))
field = getattr(dataset, fieldname)
return transform(field) if transform else field
[docs]def get_acqf_input_constructor(
acqf_cls: Type[AcquisitionFunction],
) -> Callable[..., Dict[str, Any]]:
r"""Get acqusition function input constructor from registry.
Args:
acqf_cls: The AcquisitionFunction class (not instance) for which
to retrieve the input constructor.
Returns:
The input constructor associated with `acqf_cls`.
"""
if acqf_cls not in ACQF_INPUT_CONSTRUCTOR_REGISTRY:
raise RuntimeError(
f"Input constructor for acquisition class `{acqf_cls.__name__}` not "
"registered. Use the `@acqf_input_constructor` decorator to register "
"a new method."
)
return ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls]
[docs]def acqf_input_constructor(
*acqf_cls: Type[AcquisitionFunction],
) -> Callable[..., AcquisitionFunction]:
r"""Decorator for registering acquisition function input constructors.
Args:
acqf_cls: The AcquisitionFunction classes (not instances) for which
to register the input constructor.
"""
for acqf_cls_ in acqf_cls:
if acqf_cls_ in ACQF_INPUT_CONSTRUCTOR_REGISTRY:
raise ValueError(
"Cannot register duplicate arg constructor for acquisition "
f"class `{acqf_cls_.__name__}`"
)
def decorator(method):
for acqf_cls_ in acqf_cls:
_register_acqf_input_constructor(
acqf_cls=acqf_cls_, input_constructor=method
)
ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls_] = method
return method
return decorator
def _register_acqf_input_constructor(
acqf_cls: Type[AcquisitionFunction],
input_constructor: Callable[..., Dict[str, Any]],
) -> None:
ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls] = input_constructor
# --------------------- Input argument constructors --------------------- #
[docs]@acqf_input_constructor(PosteriorMean)
def construct_inputs_analytic_base(
model: Model,
training_data: MaybeDict[SupervisedDataset],
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for basic analytic acquisition functions.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model. Not used.
posterior_transform: The posterior transform to be used in the
acquisition function.
kwargs: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
return {"model": model, "posterior_transform": posterior_transform}
[docs]@acqf_input_constructor(
ExpectedImprovement,
LogExpectedImprovement,
ProbabilityOfImprovement,
LogProbabilityOfImprovement,
)
def construct_inputs_best_f(
model: Model,
training_data: MaybeDict[SupervisedDataset],
posterior_transform: Optional[PosteriorTransform] = None,
best_f: Optional[Union[float, Tensor]] = None,
maximize: bool = True,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the acquisition functions requiring `best_f`.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
Used to determine default value for `best_f`.
best_f: Threshold above (or below) which improvement is defined.
posterior_transform: The posterior transform to be used in the
acquisition function.
maximize: If True, consider the problem a maximization problem.
kwargs: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
base_inputs = construct_inputs_analytic_base(
model=model,
training_data=training_data,
posterior_transform=posterior_transform,
)
if best_f is None:
best_f = get_best_f_analytic(
training_data=training_data,
posterior_transform=posterior_transform,
)
return {**base_inputs, "best_f": best_f, "maximize": maximize}
[docs]@acqf_input_constructor(UpperConfidenceBound)
def construct_inputs_ucb(
model: Model,
training_data: MaybeDict[SupervisedDataset],
posterior_transform: Optional[PosteriorTransform] = None,
beta: Union[float, Tensor] = 0.2,
maximize: bool = True,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `UpperConfidenceBound`.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model. Not used.
posterior_transform: The posterior transform to be used in the
acquisition function.
beta: Either a scalar or a one-dim tensor with `b` elements (batch mode)
representing the trade-off parameter between mean and covariance
maximize: If True, consider the problem a maximization problem.
kwargs: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
base_inputs = construct_inputs_analytic_base(
model=model,
training_data=training_data,
posterior_transform=posterior_transform,
)
return {**base_inputs, "beta": beta, "maximize": maximize}
[docs]@acqf_input_constructor(
ConstrainedExpectedImprovement, LogConstrainedExpectedImprovement
)
def construct_inputs_constrained_ei(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective_index: int,
constraints: Dict[int, Tuple[Optional[float], Optional[float]]],
maximize: bool = True,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `ConstrainedExpectedImprovement`.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective_index: The index of the objective.
constraints: A dictionary of the form `{i: [lower, upper]}`, where
`i` is the output index, and `lower` and `upper` are lower and upper
bounds on that output (resp. interpreted as -Inf / Inf if None)
maximize: If True, consider the problem a maximization problem.
kwargs: Additional keyword arguments.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
# TODO: Implement best point computation from training data
# best_f =
# return {
# "model": model,
# "best_f": best_f,
# "objective_index": objective_index,
# "constraints": constraints,
# "maximize": maximize,
# }
raise NotImplementedError # pragma: nocover
[docs]@acqf_input_constructor(NoisyExpectedImprovement, LogNoisyExpectedImprovement)
def construct_inputs_noisy_ei(
model: Model,
training_data: MaybeDict[SupervisedDataset],
num_fantasies: int = 20,
maximize: bool = True,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `NoisyExpectedImprovement`.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
num_fantasies: The number of fantasies to generate. The higher this
number the more accurate the model (at the expense of model
complexity and performance).
maximize: If True, consider the problem a maximization problem.
kwargs: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
# TODO: Add prune_baseline functionality as for qNEI
X = _get_dataset_field(training_data, "X", first_only=True, assert_shared=True)
return {
"model": model,
"X_observed": X(),
"num_fantasies": num_fantasies,
"maximize": maximize,
}
def _construct_inputs_mc_base(
model: Model,
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
) -> Dict[str, Any]:
r"""Construct kwargs for basic MC acquisition functions.
Args:
model: The model to be used in the acquisition function.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points
that have points that have been submitted for function evaluation
but have not yet been evaluated.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
return {
"model": model,
"objective": objective,
"posterior_transform": posterior_transform,
"X_pending": X_pending,
"sampler": sampler,
}
[docs]@acqf_input_constructor(qSimpleRegret)
def construct_inputs_qSimpleRegret(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for qSimpleRegret.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model. Not used.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points
that have points that have been submitted for function evaluation
but have not yet been evaluated.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
kwargs: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
return _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
X_pending=X_pending,
sampler=sampler,
)
[docs]@acqf_input_constructor(qExpectedImprovement)
def construct_inputs_qEI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
best_f: Optional[Union[float, Tensor]] = None,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
eta: Union[Tensor, float] = 1e-3,
**ignored: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `qExpectedImprovement` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
best_f: Threshold above (or below) which improvement is defined.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
eta: Temperature parameter(s) governing the smoothness of the sigmoid
approximation to the constraint indicators. For more details, on this
parameter, see the docs of `compute_smoothed_feasibility_indicator`.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
base_inputs = _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
sampler=sampler,
X_pending=X_pending,
)
if best_f is None:
best_f = get_best_f_mc(
training_data=training_data,
objective=objective,
posterior_transform=posterior_transform,
constraints=constraints,
model=model,
)
return {**base_inputs, "best_f": best_f, "constraints": constraints, "eta": eta}
[docs]@acqf_input_constructor(qLogExpectedImprovement)
def construct_inputs_qLogEI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
best_f: Optional[Union[float, Tensor]] = None,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
eta: Union[Tensor, float] = 1e-3,
fat: bool = True,
tau_max: float = TAU_MAX,
tau_relu: float = TAU_RELU,
**ignored: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `qExpectedImprovement` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
best_f: Threshold above (or below) which improvement is defined.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
eta: Temperature parameter(s) governing the smoothness of the sigmoid
approximation to the constraint indicators. For more details, on this
parameter, see the docs of `compute_smoothed_feasibility_indicator`.
fat: Toggles the logarithmic / linear asymptotic behavior of the smooth
approximation to the ReLU.
tau_max: Temperature parameter controlling the sharpness of the smooth
approximations to max.
tau_relu: Temperature parameter controlling the sharpness of the smooth
approximations to ReLU.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
return {
**construct_inputs_qEI(
model=model,
training_data=training_data,
objective=objective,
posterior_transform=posterior_transform,
X_pending=X_pending,
sampler=sampler,
best_f=best_f,
constraints=constraints,
eta=eta,
),
"fat": fat,
"tau_max": tau_max,
"tau_relu": tau_relu,
}
[docs]@acqf_input_constructor(qNoisyExpectedImprovement)
def construct_inputs_qNEI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
X_baseline: Optional[Tensor] = None,
prune_baseline: Optional[bool] = True,
cache_root: Optional[bool] = True,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
eta: Union[Tensor, float] = 1e-3,
**ignored: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `qNoisyExpectedImprovement` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points
that have already been observed. These points are considered as
the potential best design point. If omitted, checks that all
training_data have the same input features and take the first `X`.
prune_baseline: If True, remove points in `X_baseline` that are
highly unlikely to be the best point. This can significantly
improve performance and is generally recommended.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
eta: Temperature parameter(s) governing the smoothness of the sigmoid
approximation to the constraint indicators. For more details, on this
parameter, see the docs of `compute_smoothed_feasibility_indicator`.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
base_inputs = _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
sampler=sampler,
X_pending=X_pending,
)
if X_baseline is None:
X_baseline = _get_dataset_field(
training_data,
fieldname="X",
transform=lambda field: field(),
assert_shared=True,
first_only=True,
)
return {
**base_inputs,
"X_baseline": X_baseline,
"prune_baseline": prune_baseline,
"cache_root": cache_root,
"constraints": constraints,
"eta": eta,
}
[docs]@acqf_input_constructor(qLogNoisyExpectedImprovement)
def construct_inputs_qLogNEI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
X_baseline: Optional[Tensor] = None,
prune_baseline: Optional[bool] = True,
cache_root: Optional[bool] = True,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
eta: Union[Tensor, float] = 1e-3,
fat: bool = True,
tau_max: float = TAU_MAX,
tau_relu: float = TAU_RELU,
**ignored: Any,
):
r"""Construct kwargs for the `qNoisyExpectedImprovement` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points
that have already been observed. These points are considered as
the potential best design point. If omitted, checks that all
training_data have the same input features and take the first `X`.
prune_baseline: If True, remove points in `X_baseline` that are
highly unlikely to be the best point. This can significantly
improve performance and is generally recommended.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
eta: Temperature parameter(s) governing the smoothness of the sigmoid
approximation to the constraint indicators. For more details, on this
parameter, see the docs of `compute_smoothed_feasibility_indicator`.
fat: Toggles the logarithmic / linear asymptotic behavior of the smooth
approximation to the ReLU.
tau_max: Temperature parameter controlling the sharpness of the smooth
approximations to max.
tau_relu: Temperature parameter controlling the sharpness of the smooth
approximations to ReLU.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
return {
**construct_inputs_qNEI(
model=model,
training_data=training_data,
objective=objective,
posterior_transform=posterior_transform,
X_pending=X_pending,
sampler=sampler,
X_baseline=X_baseline,
prune_baseline=prune_baseline,
cache_root=cache_root,
constraint=constraints,
eta=eta,
),
"fat": fat,
"tau_max": tau_max,
"tau_relu": tau_relu,
}
[docs]@acqf_input_constructor(qProbabilityOfImprovement)
def construct_inputs_qPI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
tau: float = 1e-3,
best_f: Optional[Union[float, Tensor]] = None,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
eta: Union[Tensor, float] = 1e-3,
**ignored: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `qProbabilityOfImprovement` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
tau: The temperature parameter used in the sigmoid approximation
of the step function. Smaller values yield more accurate
approximations of the function, but result in gradients
estimates with higher variance.
best_f: The best objective value observed so far (assumed noiseless). Can
be a `batch_shape`-shaped tensor, which in case of a batched model
specifies potentially different values for each element of the batch.
constraints: A list of constraint callables which map a Tensor of posterior
samples of dimension `sample_shape x batch-shape x q x m`-dim to a
`sample_shape x batch-shape x q`-dim Tensor. The associated constraints
are considered satisfied if the output is less than zero.
eta: Temperature parameter(s) governing the smoothness of the sigmoid
approximation to the constraint indicators. For more details, on this
parameter, see the docs of `compute_smoothed_feasibility_indicator`.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
if best_f is None:
best_f = get_best_f_mc(
training_data=training_data,
objective=objective,
posterior_transform=posterior_transform,
constraints=constraints,
model=model,
)
base_inputs = _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
sampler=sampler,
X_pending=X_pending,
)
return {
**base_inputs,
"tau": tau,
"best_f": best_f,
"constraints": constraints,
"eta": eta,
}
[docs]@acqf_input_constructor(qUpperConfidenceBound)
def construct_inputs_qUCB(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
X_pending: Optional[Tensor] = None,
sampler: Optional[MCSampler] = None,
beta: float = 0.2,
**ignored: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `qUpperConfidenceBound` constructor.
Args:
model: The model to be used in the acquisition function.
training_data: Dataset(s) used to train the model.
objective: The objective to be used in the acquisition function.
posterior_transform: The posterior transform to be used in the
acquisition function.
X_pending: A `m x d`-dim Tensor of `m` design points that have been
submitted for function evaluation but have not yet been evaluated.
Concatenated into X upon forward call.
sampler: The sampler used to draw base samples. If omitted, uses
the acquisition functions's default sampler.
beta: Controls tradeoff between mean and standard deviation in UCB.
ignored: Not used.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
base_inputs = _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
sampler=sampler,
X_pending=X_pending,
)
return {**base_inputs, "beta": beta}
def _get_sampler(mc_samples: int, qmc: bool) -> MCSampler:
"""Set up MC sampler for q(N)EHVI."""
# initialize the sampler
shape = torch.Size([mc_samples])
if qmc:
return SobolQMCNormalSampler(sample_shape=shape)
return IIDNormalSampler(sample_shape=shape)
[docs]@acqf_input_constructor(ExpectedHypervolumeImprovement)
def construct_inputs_EHVI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective_thresholds: Tensor,
objective: Optional[AnalyticMultiOutputObjective] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `ExpectedHypervolumeImprovement` constructor."""
num_objectives = objective_thresholds.shape[0]
if kwargs.get("outcome_constraints") is not None:
raise NotImplementedError("EHVI does not yet support outcome constraints.")
X = _get_dataset_field(
training_data,
fieldname="X",
transform=lambda field: field(),
first_only=True,
assert_shared=True,
)
alpha = kwargs.get(
"alpha",
get_default_partitioning_alpha(num_objectives=num_objectives),
)
# This selects the objectives (a subset of the outcomes) and set each
# objective threhsold to have the proper optimization direction.
if objective is None:
objective = IdentityAnalyticMultiOutputObjective()
if isinstance(objective, RiskMeasureMCObjective):
pre_obj = objective.preprocessing_function
else:
pre_obj = objective
ref_point = pre_obj(objective_thresholds)
# Compute posterior mean (for ref point computation ref pareto frontier)
# if one is not provided among arguments.
Y_pmean = kwargs.get("Y_pmean")
if Y_pmean is None:
with torch.no_grad():
Y_pmean = model.posterior(X).mean
if alpha > 0:
partitioning = NondominatedPartitioning(
ref_point=ref_point,
Y=pre_obj(Y_pmean),
alpha=alpha,
)
else:
partitioning = FastNondominatedPartitioning(
ref_point=ref_point,
Y=pre_obj(Y_pmean),
)
return {
"model": model,
"ref_point": ref_point,
"partitioning": partitioning,
"objective": objective,
}
[docs]@acqf_input_constructor(qExpectedHypervolumeImprovement)
def construct_inputs_qEHVI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective_thresholds: Tensor,
objective: Optional[MCMultiOutputObjective] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qExpectedHypervolumeImprovement` constructor."""
X = _get_dataset_field(
training_data,
fieldname="X",
transform=lambda field: field(),
first_only=True,
assert_shared=True,
)
# compute posterior mean (for ref point computation ref pareto frontier)
with torch.no_grad():
Y_pmean = model.posterior(X).mean
outcome_constraints = kwargs.pop("outcome_constraints", None)
# For HV-based acquisition functions we pass the constraint transform directly
if outcome_constraints is None:
cons_tfs = None
else:
cons_tfs = get_outcome_constraint_transforms(outcome_constraints)
# Adjust `Y_pmean` to contrain feasible points only.
feas = torch.stack([c(Y_pmean) <= 0 for c in cons_tfs], dim=-1).all(dim=-1)
Y_pmean = Y_pmean[feas]
if objective is None:
objective = IdentityMCMultiOutputObjective()
ehvi_kwargs = construct_inputs_EHVI(
model=model,
training_data=training_data,
objective_thresholds=objective_thresholds,
objective=objective,
# Pass `Y_pmean` that accounts for constraints to `construct_inputs_EHVI`
# to ensure that correct non-dominated partitioning is produced.
Y_pmean=Y_pmean,
**kwargs,
)
sampler = kwargs.get("sampler")
if sampler is None and isinstance(model, GPyTorchModel):
sampler = _get_sampler(
mc_samples=kwargs.get("mc_samples", 128), qmc=kwargs.get("qmc", True)
)
add_qehvi_kwargs = {
"sampler": sampler,
"X_pending": kwargs.get("X_pending"),
"constraints": cons_tfs,
"eta": kwargs.get("eta", 1e-3),
}
return {**ehvi_kwargs, **add_qehvi_kwargs}
[docs]@acqf_input_constructor(qNoisyExpectedHypervolumeImprovement)
def construct_inputs_qNEHVI(
model: Model,
training_data: MaybeDict[SupervisedDataset],
objective_thresholds: Tensor,
objective: Optional[MCMultiOutputObjective] = None,
X_baseline: Optional[Tensor] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qNoisyExpectedHypervolumeImprovement` constructor."""
if X_baseline is None:
X_baseline = _get_dataset_field(
training_data,
fieldname="X",
transform=lambda field: field(),
first_only=True,
assert_shared=True,
)
# This selects the objectives (a subset of the outcomes) and set each
# objective threhsold to have the proper optimization direction.
if objective is None:
objective = IdentityMCMultiOutputObjective()
outcome_constraints = kwargs.pop("outcome_constraints", None)
if outcome_constraints is None:
cons_tfs = None
else:
if isinstance(objective, RiskMeasureMCObjective):
raise UnsupportedError(
"Outcome constraints are not supported with risk measures. "
"Use a feasibility-weighted risk measure instead."
)
cons_tfs = get_outcome_constraint_transforms(outcome_constraints)
sampler = kwargs.get("sampler")
if sampler is None and isinstance(model, GPyTorchModel):
sampler = _get_sampler(
mc_samples=kwargs.get("mc_samples", 128), qmc=kwargs.get("qmc", True)
)
if isinstance(objective, RiskMeasureMCObjective):
ref_point = objective.preprocessing_function(objective_thresholds)
else:
ref_point = objective(objective_thresholds)
num_objectives = objective_thresholds[~torch.isnan(objective_thresholds)].shape[0]
return {
"model": model,
"ref_point": ref_point,
"X_baseline": X_baseline,
"sampler": sampler,
"objective": objective,
"constraints": cons_tfs,
"X_pending": kwargs.get("X_pending"),
"eta": kwargs.get("eta", 1e-3),
"prune_baseline": kwargs.get("prune_baseline", True),
"alpha": kwargs.get("alpha", get_default_partitioning_alpha(num_objectives)),
"cache_pending": kwargs.get("cache_pending", True),
"max_iep": kwargs.get("max_iep", 0),
"incremental_nehvi": kwargs.get("incremental_nehvi", True),
"cache_root": kwargs.get("cache_root", True),
}
[docs]@acqf_input_constructor(qMaxValueEntropy)
def construct_inputs_qMES(
model: Model,
training_data: MaybeDict[SupervisedDataset],
bounds: List[Tuple[float, float]],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
candidate_size: int = 1000,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qMaxValueEntropy` constructor."""
inputs_mc = _construct_inputs_mc_base(
model=model,
objective=objective,
)
X = _get_dataset_field(training_data, "X", first_only=True)
_kw = {"device": X.device, "dtype": X.dtype}
_rvs = torch.rand(candidate_size, len(bounds), **_kw)
_bounds = torch.tensor(bounds, **_kw).transpose(0, 1)
return {
**inputs_mc,
"candidate_set": _bounds[0] + (_bounds[1] - _bounds[0]) * _rvs,
"maximize": kwargs.get("maximize", True),
}
[docs]def construct_inputs_mf_base(
model: Model,
training_data: MaybeDict[SupervisedDataset],
target_fidelities: Dict[int, Union[int, float]],
fidelity_weights: Optional[Dict[int, float]] = None,
cost_intercept: float = 1.0,
num_trace_observations: int = 0,
**ignore: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for a multifidelity acquisition function's constructor."""
if fidelity_weights is None:
fidelity_weights = {f: 1.0 for f in target_fidelities}
if set(target_fidelities) != set(fidelity_weights):
raise RuntimeError(
"Must provide the same indices for target_fidelities "
f"({set(target_fidelities)}) and fidelity_weights "
f" ({set(fidelity_weights)})."
)
cost_aware_utility = InverseCostWeightedUtility(
cost_model=AffineFidelityCostModel(
fidelity_weights=fidelity_weights, fixed_cost=cost_intercept
)
)
return {
"target_fidelities": target_fidelities,
"cost_aware_utility": cost_aware_utility,
"expand": lambda X: expand_trace_observations(
X=X,
fidelity_dims=sorted(target_fidelities),
num_trace_obs=num_trace_observations,
),
"project": lambda X: project_to_target_fidelity(
X=X, target_fidelities=target_fidelities
),
}
[docs]@acqf_input_constructor(qKnowledgeGradient)
def construct_inputs_qKG(
model: Model,
training_data: MaybeDict[SupervisedDataset],
bounds: List[Tuple[float, float]],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
target_fidelities: Optional[Dict[int, float]] = None,
num_fantasies: int = 64,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qKnowledgeGradient` constructor."""
inputs_mc = _construct_inputs_mc_base(
model=model,
objective=objective,
posterior_transform=posterior_transform,
)
X = _get_dataset_field(training_data, "X", first_only=True)
_bounds = torch.tensor(bounds, dtype=X.dtype, device=X.device)
_, current_value = optimize_objective(
model=model,
bounds=_bounds.t(),
q=1,
objective=objective,
posterior_transform=posterior_transform,
**kwargs,
)
return {
**inputs_mc,
"num_fantasies": num_fantasies,
"current_value": current_value.detach().cpu().max(),
}
[docs]@acqf_input_constructor(qMultiFidelityKnowledgeGradient)
def construct_inputs_qMFKG(
model: Model,
training_data: MaybeDict[SupervisedDataset],
bounds: List[Tuple[float, float]],
target_fidelities: Dict[int, Union[int, float]],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qMultiFidelityKnowledgeGradient` constructor."""
inputs_mf = construct_inputs_mf_base(
model=model,
training_data=training_data,
target_fidelities=target_fidelities,
**kwargs,
)
inputs_kg = construct_inputs_qKG(
model=model,
training_data=training_data,
bounds=bounds,
objective=objective,
posterior_transform=posterior_transform,
**kwargs,
)
return {**inputs_mf, **inputs_kg}
[docs]@acqf_input_constructor(qMultiFidelityMaxValueEntropy)
def construct_inputs_qMFMES(
model: Model,
training_data: MaybeDict[SupervisedDataset],
bounds: List[Tuple[float, float]],
target_fidelities: Dict[int, Union[int, float]],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for `qMultiFidelityMaxValueEntropy` constructor."""
inputs_mf = construct_inputs_mf_base(
model=model,
training_data=training_data,
target_fidelities=target_fidelities,
**kwargs,
)
inputs_qmes = construct_inputs_qMES(
model=model,
training_data=training_data,
bounds=bounds,
objective=objective,
posterior_transform=posterior_transform,
**kwargs,
)
X = _get_dataset_field(training_data, "X", first_only=True)
_bounds = torch.tensor(bounds, dtype=X.dtype, device=X.device)
_, current_value = optimize_objective(
model=model,
bounds=_bounds.t(),
q=1,
objective=objective,
posterior_transform=posterior_transform,
**kwargs,
)
return {
**inputs_mf,
**inputs_qmes,
"current_value": current_value.detach().cpu().max(),
}
[docs]@acqf_input_constructor(AnalyticExpectedUtilityOfBestOption)
def construct_inputs_analytic_eubo(
model: Model,
pref_model: Model,
previous_winner: Optional[Tensor] = None,
sample_multiplier: Optional[float] = 1.0,
**kwargs: Any,
) -> Dict[str, Any]:
r"""Construct kwargs for the `AnalyticExpectedUtilityOfBestOption` constructor.
Args:
model: The outcome model to be used in the acquisition function.
pref_model: The preference model to be used in preference exploration.
previous_winner: The previous winner of the best option.
sample_multiplier: The scale factor for the single-sample model.
Returns:
A dict mapping kwarg names of the constructor to values.
"""
# construct a deterministic fixed single sample model from `model`
# i.e., performing EUBO-zeta by default as described
# in https://arxiv.org/abs/2203.11382
# using pref_model.dim instead of model.num_outputs here as MTGP's
# num_outputs could be tied to the number of tasks
w = torch.randn(pref_model.dim) * sample_multiplier
one_sample_outcome_model = FixedSingleSampleModel(model=model, w=w)
return {
"pref_model": pref_model,
"outcome_model": one_sample_outcome_model,
"previous_winner": previous_winner,
}
[docs]def get_best_f_analytic(
training_data: MaybeDict[SupervisedDataset],
posterior_transform: Optional[PosteriorTransform] = None,
) -> Tensor:
if isinstance(training_data, dict) and not _field_is_shared(
training_data, fieldname="X"
):
raise NotImplementedError("Currently only block designs are supported.")
Y = _get_dataset_field(
training_data,
fieldname="Y",
transform=lambda field: field(),
join_rule=lambda field_tensors: torch.cat(field_tensors, dim=-1),
)
if posterior_transform is not None:
return posterior_transform.evaluate(Y).max(-1).values
if Y.shape[-1] > 1:
raise NotImplementedError(
"Analytic acquisition functions currently only work with "
"multi-output models if provided with a `ScalarizedObjective`."
)
return Y.max(-2).values.squeeze(-1)
[docs]def get_best_f_mc(
training_data: MaybeDict[SupervisedDataset],
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
model: Optional[Model] = None,
) -> Tensor:
if isinstance(training_data, dict) and not _field_is_shared(
training_data, fieldname="X"
):
raise NotImplementedError("Currently only block designs are supported.")
X_baseline = _get_dataset_field(
training_data,
fieldname="X",
transform=lambda field: field(),
assert_shared=True,
first_only=True,
)
Y = _get_dataset_field(
training_data,
fieldname="Y",
transform=lambda field: field(),
join_rule=lambda field_tensors: torch.cat(field_tensors, dim=-1),
) # batch_shape x n x d
if posterior_transform is not None:
# retain the original tensor dimension since objective expects explicit
# output dimension.
Y_dim = Y.dim()
Y = posterior_transform.evaluate(Y)
if Y.dim() < Y_dim:
Y = Y.unsqueeze(-1)
if objective is None:
if Y.shape[-1] > 1:
raise UnsupportedError(
"Acquisition functions require an objective when "
"used with multi-output models (execpt for multi-objective"
"acquisition functions)."
)
objective = IdentityMCObjective()
obj = objective(Y, X=X_baseline) # batch_shape x n
return compute_best_feasible_objective(
samples=Y,
obj=obj,
constraints=constraints,
model=model,
objective=objective,
posterior_transform=posterior_transform,
X_baseline=X_baseline,
)
[docs]def optimize_objective(
model: Model,
bounds: Tensor,
q: int,
objective: Optional[MCAcquisitionObjective] = None,
posterior_transform: Optional[PosteriorTransform] = None,
linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
fixed_features: Optional[Dict[int, float]] = None,
qmc: bool = True,
mc_samples: int = 512,
seed_inner: Optional[int] = None,
optimizer_options: Optional[Dict[str, Any]] = None,
post_processing_func: Optional[Callable[[Tensor], Tensor]] = None,
batch_initial_conditions: Optional[Tensor] = None,
sequential: bool = False,
**ignore,
) -> Tuple[Tensor, Tensor]:
r"""Optimize an objective under the given model.
Args:
model: The model to be used in the objective.
bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`.
q: The cardinality of input sets on which the objective is to be evaluated.
objective: The objective to optimize.
posterior_transform: The posterior transform to be used in the
acquisition function.
linear_constraints: A tuple of (A, b). Given `k` linear constraints on a
`d`-dimensional space, `A` is `k x d` and `b` is `k x 1` such that
`A x <= b`. (Not used by single task models).
fixed_features: A dictionary of feature assignments `{feature_index: value}` to
hold fixed during generation.
qmc: Toggle for enabling (qmc=1) or disabling (qmc=0) use of Quasi Monte Carlo.
mc_samples: Integer number of samples used to estimate Monte Carlo objectives.
seed_inner: Integer seed used to initialize the sampler passed to MCObjective.
optimizer_options: Table used to lookup keyword arguments for the optimizer.
post_processing_func: A function that post-processes an optimization
result appropriately (i.e. according to `round-trip` transformations).
batch_initial_conditions: A Tensor of initial values for the optimizer.
sequential: If False, uses joint optimization, otherwise uses sequential
optimization.
ignore: Any other arguments are ignored.
Returns:
A tuple containing the best input locations and corresponding objective values.
"""
if optimizer_options is None:
optimizer_options = {}
if objective is not None:
sampler_cls = SobolQMCNormalSampler if qmc else IIDNormalSampler
acq_function = qSimpleRegret(
model=model,
objective=objective,
posterior_transform=posterior_transform,
sampler=sampler_cls(sample_shape=torch.Size([mc_samples]), seed=seed_inner),
)
else:
acq_function = PosteriorMean(
model=model, posterior_transform=posterior_transform
)
if fixed_features:
acq_function = FixedFeatureAcquisitionFunction(
acq_function=acq_function,
d=bounds.shape[-1],
columns=list(fixed_features.keys()),
values=list(fixed_features.values()),
)
free_feature_dims = list(range(len(bounds)) - fixed_features.keys())
free_feature_bounds = bounds[:, free_feature_dims] # (2, d' <= d)
else:
free_feature_bounds = bounds
if linear_constraints is None:
inequality_constraints = None
else:
A, b = linear_constraints
inequality_constraints = []
k, d = A.shape
for i in range(k):
indicies = A[i, :].nonzero(as_tuple=False).squeeze()
coefficients = -A[i, indicies]
rhs = -b[i, 0]
inequality_constraints.append((indicies, coefficients, rhs))
return optimize_acqf(
acq_function=acq_function,
bounds=free_feature_bounds,
q=q,
num_restarts=optimizer_options.get("num_restarts", 60),
raw_samples=optimizer_options.get("raw_samples", 1024),
options={
"batch_limit": optimizer_options.get("batch_limit", 8),
"maxiter": optimizer_options.get("maxiter", 200),
"nonnegative": optimizer_options.get("nonnegative", False),
"method": optimizer_options.get("method", "L-BFGS-B"),
},
inequality_constraints=inequality_constraints,
fixed_features=None, # handled inside the acquisition function
post_processing_func=post_processing_func,
batch_initial_conditions=batch_initial_conditions,
return_best_only=True,
sequential=sequential,
)
[docs]@acqf_input_constructor(qJointEntropySearch)
def construct_inputs_qJES(
model: Model,
training_data: MaybeDict[SupervisedDataset],
bounds: List[Tuple[float, float]],
num_optima: int = 64,
maximize: bool = True,
condition_noiseless: bool = True,
X_pending: Optional[Tensor] = None,
estimation_type: str = "LB",
num_samples: int = 64,
**kwargs: Any,
):
dtype = model.train_targets.dtype
optimal_inputs, optimal_outputs = get_optimal_samples(
model=model,
bounds=torch.as_tensor(bounds, dtype=dtype).T,
num_optima=num_optima,
maximize=maximize,
)
inputs = {
"model": model,
"optimal_inputs": optimal_inputs,
"optimal_outputs": optimal_outputs,
"condition_noiseless": condition_noiseless,
"maximize": maximize,
"X_pending": X_pending,
"estimation_type": estimation_type,
"num_samples": num_samples,
**kwargs,
}
return inputs