#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from abc import ABC
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Mapping,
Optional,
Tuple,
Union,
)
from botorch.exceptions.errors import UnsupportedError
from botorch.sampling.pathwise.features import FeatureMap
from botorch.sampling.pathwise.utils import (
TInputTransform,
TOutputTransform,
TransformedModuleMixin,
)
from torch import Tensor
from torch.nn import Module, ModuleDict, ModuleList, Parameter
[docs]class SamplePath(ABC, TransformedModuleMixin, Module):
r"""Abstract base class for Botorch sample paths."""
[docs]class PathDict(SamplePath):
r"""A dictionary of SamplePaths."""
def __init__(
self,
paths: Optional[Mapping[str, SamplePath]] = None,
join: Optional[Callable[[List[Tensor]], Tensor]] = None,
input_transform: Optional[TInputTransform] = None,
output_transform: Optional[TOutputTransform] = None,
) -> None:
r"""Initializes a PathDict instance.
Args:
paths: An optional mapping of strings to sample paths.
join: An optional callable used to combine each path's outputs.
input_transform: An optional input transform for the module.
output_transform: An optional output transform for the module.
"""
if join is None and output_transform is not None:
raise UnsupportedError("Output transforms must be preceded by a join rule.")
super().__init__()
self.join = join
self.input_transform = input_transform
self.output_transform = output_transform
self.paths = (
paths
if isinstance(paths, ModuleDict)
else ModuleDict({} if paths is None else paths)
)
[docs] def forward(self, x: Tensor, **kwargs: Any) -> Union[Tensor, Dict[str, Tensor]]:
out = [path(x, **kwargs) for path in self.paths.values()]
return dict(zip(self.paths, out)) if self.join is None else self.join(out)
[docs] def items(self) -> Iterable[Tuple[str, SamplePath]]:
return self.paths.items()
[docs] def keys(self) -> Iterable[str]:
return self.paths.keys()
[docs] def values(self) -> Iterable[SamplePath]:
return self.paths.values()
def __len__(self) -> int:
return len(self.paths)
def __iter__(self) -> Iterator[SamplePath]:
yield from self.paths
def __delitem__(self, key: str) -> None:
del self.paths[key]
def __getitem__(self, key: str) -> SamplePath:
return self.paths[key]
def __setitem__(self, key: str, val: SamplePath) -> None:
self.paths[key] = val
[docs]class PathList(SamplePath):
r"""A list of SamplePaths."""
def __init__(
self,
paths: Optional[Iterable[SamplePath]] = None,
join: Optional[Callable[[List[Tensor]], Tensor]] = None,
input_transform: Optional[TInputTransform] = None,
output_transform: Optional[TOutputTransform] = None,
) -> None:
r"""Initializes a PathList instance.
Args:
paths: An optional iterable of sample paths.
join: An optional callable used to combine each path's outputs.
input_transform: An optional input transform for the module.
output_transform: An optional output transform for the module.
"""
if join is None and output_transform is not None:
raise UnsupportedError("Output transforms must be preceded by a join rule.")
super().__init__()
self.join = join
self.input_transform = input_transform
self.output_transform = output_transform
self.paths = (
paths
if isinstance(paths, ModuleList)
else ModuleList({} if paths is None else paths)
)
[docs] def forward(self, x: Tensor, **kwargs: Any) -> Union[Tensor, List[Tensor]]:
out = [path(x, **kwargs) for path in self.paths]
return out if self.join is None else self.join(out)
def __len__(self) -> int:
return len(self.paths)
def __iter__(self) -> Iterator[SamplePath]:
yield from self.paths
def __delitem__(self, key: int) -> None:
del self.paths[key]
def __getitem__(self, key: int) -> SamplePath:
return self.paths[key]
def __setitem__(self, key: int, val: SamplePath) -> None:
self.paths[key] = val
[docs]class GeneralizedLinearPath(SamplePath):
r"""A sample path in the form of a generalized linear model."""
def __init__(
self,
feature_map: FeatureMap,
weight: Union[Parameter, Tensor],
bias_module: Optional[Module] = None,
input_transform: Optional[TInputTransform] = None,
output_transform: Optional[TOutputTransform] = None,
):
r"""Initializes a GeneralizedLinearPath instance.
.. code-block:: text
path(x) = output_transform(bias_module(z) + feature_map(z)^T weight),
where z = input_transform(x).
Args:
feature_map: A map used to featurize the module's inputs.
weight: A tensor of weights used to combine input features.
bias_module: An optional module used to define additive offsets.
input_transform: An optional input transform for the module.
output_transform: An optional output transform for the module.
"""
super().__init__()
self.feature_map = feature_map
self.weight = weight
self.bias_module = bias_module
self.input_transform = input_transform
self.output_transform = output_transform
[docs] def forward(self, x: Tensor, **kwargs) -> Tensor:
feat = self.feature_map(x, **kwargs)
out = (feat @ self.weight.unsqueeze(-1)).squeeze(-1)
return out if self.bias_module is None else out + self.bias_module(x)