Source code for botorch.utils.safe_math

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Special implementations of mathematical functions that
solve numerical issues of naive implementations.

.. [Maechler2012accurate]
    M. Mächler. Accurately Computing log (1 - exp (-| a|))
        Assessed by the Rmpfr package. Technical report, 2012.
"""

from __future__ import annotations

import math

import torch
from botorch.utils.constants import get_constants_like
from torch import finfo, Tensor

_log2 = math.log(2)


# Unary ops
[docs]def exp(x: Tensor, **kwargs) -> Tensor: info = finfo(x.dtype) maxexp = get_constants_like(math.log(info.max) - 1e-4, x) return torch.exp(x.clip(max=maxexp), **kwargs)
[docs]def log(x: Tensor, **kwargs) -> Tensor: info = finfo(x.dtype) return torch.log(x.clip(min=info.tiny), **kwargs)
# Binary ops
[docs]def add(a: Tensor, b: Tensor, **kwargs) -> Tensor: _0 = get_constants_like(0, a) case = a.isinf() & b.isinf() & (a != b) return torch.where(case, _0, a + b)
[docs]def sub(a: Tensor, b: Tensor) -> Tensor: _0 = get_constants_like(0, a) case = (a.isinf() & b.isinf()) & (a == b) return torch.where(case, _0, a - b)
[docs]def div(a: Tensor, b: Tensor) -> Tensor: _0, _1 = get_constants_like(values=(0, 1), ref=a) case = ((a == _0) & (b == _0)) | (a.isinf() & a.isinf()) return torch.where(case, torch.where(a != b, -_1, _1), a / torch.where(case, _1, b))
[docs]def mul(a: Tensor, b: Tensor) -> Tensor: _0 = get_constants_like(values=0, ref=a) case = (a.isinf() & (b == _0)) | (b.isinf() & (a == _0)) return torch.where(case, _0, a * torch.where(case, _0, b))
[docs]def log1mexp(x: Tensor) -> Tensor: """Numerically accurate evaluation of log(1 - exp(x)) for x < 0. See [Maechler2012accurate]_ for details. """ log2 = get_constants_like(values=_log2, ref=x) is_small = -log2 < x # x < 0 return torch.where( is_small, (-x.expm1()).log(), (-x.exp()).log1p(), )
[docs]def logdiffexp(log_a: Tensor, log_b: Tensor) -> Tensor: """Computes log(b - a) accurately given log(a) and log(b). Assumes, log_b > log_a, i.e. b > a > 0. Args: log_a (Tensor): The logarithm of a, assumed to be less than log_b. log_b (Tensor): The logarithm of b, assumed to be larger than log_a. Returns: A Tensor of values corresponding to log(b - a). """ return log_b + log1mexp(log_a - log_b)
[docs]def logmeanexp(X: Tensor, dim: int = -1) -> Tensor: """Computes log(mean(exp(X), dim=dim)). Args: X (Tensor): The logarithm of a, assumed to be less than log_b. dim (int): The dimension over which to compute the mean. Default is -1. Returns: A Tensor of values corresponding to log(mean(exp(X), dim=dim)). """ return torch.logsumexp(X, dim=dim) - math.log(X.shape[dim])