Source code for botorch.models.approximate_gp

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
References

.. [burt2020svgp]
    David R. Burt and Carl Edward Rasmussen and Mark van der Wilk,
    Convergence of Sparse Variational Inference in Gaussian Process Regression,
    Journal of Machine Learning Research, 2020,
    http://jmlr.org/papers/v21/19-1015.html.

.. [hensman2013svgp]
    James Hensman and Nicolo Fusi and Neil D. Lawrence, Gaussian Processes
    for Big Data, Proceedings of the 29th Conference on Uncertainty in
    Artificial Intelligence, 2013, https://arxiv.org/abs/1309.6835.

.. [moss2023ipa]
    Henry B. Moss and Sebastian W. Ober and Victor Picheny,
    Inducing Point Allocation for Sparse Gaussian Processes
    in High-Throughput Bayesian Optimization,Proceedings of
    the 25th International Conference on Artificial Intelligence
    and Statistics, 2023, https://arxiv.org/pdf/2301.10123.pdf.

"""

from __future__ import annotations

import copy
import warnings

from typing import Optional, Type, Union

import torch
from botorch.models.gpytorch import GPyTorchModel
from botorch.models.transforms.input import InputTransform
from botorch.models.transforms.outcome import OutcomeTransform
from botorch.models.utils import validate_input_scaling
from botorch.models.utils.inducing_point_allocators import (
    GreedyVarianceReduction,
    InducingPointAllocator,
)
from botorch.posteriors.gpytorch import GPyTorchPosterior
from gpytorch.constraints import GreaterThan
from gpytorch.distributions import MultivariateNormal
from gpytorch.kernels import Kernel, MaternKernel, ScaleKernel
from gpytorch.likelihoods import (
    GaussianLikelihood,
    Likelihood,
    MultitaskGaussianLikelihood,
)
from gpytorch.means import ConstantMean, Mean
from gpytorch.models import ApproximateGP
from gpytorch.priors import GammaPrior
from gpytorch.utils.memoize import clear_cache_hook
from gpytorch.variational import (
    _VariationalDistribution,
    _VariationalStrategy,
    CholeskyVariationalDistribution,
    IndependentMultitaskVariationalStrategy,
    VariationalStrategy,
)
from torch import Tensor


MIN_INFERRED_NOISE_LEVEL = 1e-4


[docs]class ApproximateGPyTorchModel(GPyTorchModel): r""" Botorch wrapper class for various (variational) approximate GP models in GPyTorch. This can either include stochastic variational GPs (SVGPs) or variational implementations of weight space approximate GPs. """ def __init__( self, model: Optional[ApproximateGP] = None, likelihood: Optional[Likelihood] = None, num_outputs: int = 1, *args, **kwargs, ) -> None: r""" Args: model: Instance of gpytorch.approximate GP models. If omitted, constructs a `_SingleTaskVariationalGP`. likelihood: Instance of a GPyTorch likelihood. If omitted, uses a either a `GaussianLikelihood` (if `num_outputs=1`) or a `MultitaskGaussianLikelihood`(if `num_outputs>1`). num_outputs: Number of outputs expected for the GP model. args: Optional positional arguments passed to the `_SingleTaskVariationalGP` constructor if no model is provided. kwargs: Optional keyword arguments passed to the `_SingleTaskVariationalGP` constructor if no model is provided. """ super().__init__() if model is None: model = _SingleTaskVariationalGP(num_outputs=num_outputs, *args, **kwargs) if likelihood is None: if num_outputs == 1: likelihood = GaussianLikelihood() else: likelihood = MultitaskGaussianLikelihood(num_tasks=num_outputs) self.model = model self.likelihood = likelihood self._desired_num_outputs = num_outputs @property def num_outputs(self): return self._desired_num_outputs
[docs] def posterior( self, X, output_indices=None, observation_noise=False, *args, **kwargs ) -> GPyTorchPosterior: self.eval() # make sure model is in eval mode # input transforms are applied at `posterior` in `eval` mode, and at # `model.forward()` at the training time X = self.transform_inputs(X) # check for the multi-batch case for multi-outputs b/c this will throw # warnings X_ndim = X.ndim if self.num_outputs > 1 and X_ndim > 2: X = X.unsqueeze(-3).repeat(*[1] * (X_ndim - 2), self.num_outputs, 1, 1) dist = self.model(X) if observation_noise: dist = self.likelihood(dist, *args, **kwargs) posterior = GPyTorchPosterior(distribution=dist) if hasattr(self, "outcome_transform"): posterior = self.outcome_transform.untransform_posterior(posterior) return posterior
[docs] def forward(self, X, *args, **kwargs) -> MultivariateNormal: if self.training: X = self.transform_inputs(X) return self.model(X)
class _SingleTaskVariationalGP(ApproximateGP): """ Base class wrapper for a stochastic variational Gaussian Process (SVGP) model [hensman2013svgp]_. Uses by default pivoted Cholesky initialization for allocating inducing points, however, custom inducing point allocators can be provided. """ def __init__( self, train_X: Tensor, train_Y: Optional[Tensor] = None, num_outputs: int = 1, learn_inducing_points=True, covar_module: Optional[Kernel] = None, mean_module: Optional[Mean] = None, variational_distribution: Optional[_VariationalDistribution] = None, variational_strategy: Type[_VariationalStrategy] = VariationalStrategy, inducing_points: Optional[Union[Tensor, int]] = None, inducing_point_allocator: Optional[InducingPointAllocator] = None, ) -> None: r""" Args: train_X: Training inputs (due to the ability of the SVGP to sub-sample this does not have to be all of the training inputs). train_Y: Training targets (optional). num_outputs: Number of output responses per input. covar_module: Kernel function. If omitted, uses a `MaternKernel`. mean_module: Mean of GP model. If omitted, uses a `ConstantMean`. variational_distribution: Type of variational distribution to use (default: CholeskyVariationalDistribution), the properties of the variational distribution will encourage scalability or ease of optimization. variational_strategy: Type of variational strategy to use (default: VariationalStrategy). The default setting uses "whitening" of the variational distribution to make training easier. inducing_points: The number or specific locations of the inducing points. inducing_point_allocator: The `InducingPointAllocator` used to initialize the inducing point locations. If omitted, uses `GreedyVarianceReduction`. """ # We use the model subclass wrapper to deal with input / outcome transforms. # The number of outputs will be correct here due to the check in # SingleTaskVariationalGP. input_batch_shape = train_X.shape[:-2] aug_batch_shape = copy.deepcopy(input_batch_shape) if num_outputs > 1: aug_batch_shape += torch.Size((num_outputs,)) self._aug_batch_shape = aug_batch_shape if mean_module is None: mean_module = ConstantMean(batch_shape=self._aug_batch_shape).to(train_X) if covar_module is None: covar_module = ScaleKernel( base_kernel=MaternKernel( nu=2.5, ard_num_dims=train_X.shape[-1], batch_shape=self._aug_batch_shape, lengthscale_prior=GammaPrior(3.0, 6.0), ), batch_shape=self._aug_batch_shape, outputscale_prior=GammaPrior(2.0, 0.15), ).to(train_X) self._subset_batch_dict = { "mean_module.constant": -2, "covar_module.raw_outputscale": -1, "covar_module.base_kernel.raw_lengthscale": -3, } if inducing_point_allocator is None: inducing_point_allocator = GreedyVarianceReduction() # initialize inducing points if they are not given if not isinstance(inducing_points, Tensor): if inducing_points is None: # number of inducing points is 25% the number of data points # as a heuristic inducing_points = int(0.25 * train_X.shape[-2]) inducing_points = inducing_point_allocator.allocate_inducing_points( inputs=train_X, covar_module=covar_module, num_inducing=inducing_points, input_batch_shape=input_batch_shape, ) if variational_distribution is None: variational_distribution = CholeskyVariationalDistribution( num_inducing_points=inducing_points.shape[-2], batch_shape=self._aug_batch_shape, ) variational_strategy = variational_strategy( self, inducing_points=inducing_points, variational_distribution=variational_distribution, learn_inducing_locations=learn_inducing_points, ) # wrap variational models in independent multi-task variational strategy if num_outputs > 1: variational_strategy = IndependentMultitaskVariationalStrategy( base_variational_strategy=variational_strategy, num_tasks=num_outputs, task_dim=-1, ) super().__init__(variational_strategy=variational_strategy) self.mean_module = mean_module self.covar_module = covar_module def forward(self, X) -> MultivariateNormal: mean_x = self.mean_module(X) covar_x = self.covar_module(X) latent_dist = MultivariateNormal(mean_x, covar_x) return latent_dist
[docs]class SingleTaskVariationalGP(ApproximateGPyTorchModel): r"""A single-task variational GP model following [hensman2013svgp]_. By default, the inducing points are initialized though the `GreedyVarianceReduction` of [burt2020svgp]_, which is known to be effective for building globally accurate models. However, custom inducing point allocators designed for specific down-stream tasks can also be provided (see [moss2023ipa]_ for details), e.g. `GreedyImprovementReduction` when the goal is to build a model suitable for standard BO. A single-task variational GP using relatively strong priors on the Kernel hyperparameters, which work best when covariates are normalized to the unit cube and outcomes are standardized (zero mean, unit variance). This model works in batch mode (each batch having its own hyperparameters). When the training observations include multiple outputs, this model will use batching to model outputs independently. However, batches of multi-output models are not supported at this time, if you need to use those, please use a ModelListGP. Use this model if you have a lot of data or if your responses are non-Gaussian. To train this model, you should use gpytorch.mlls.VariationalELBO and not the exact marginal log likelihood. Example: >>> import torch >>> from botorch.models import SingleTaskVariationalGP >>> from gpytorch.mlls import VariationalELBO >>> >>> train_X = torch.rand(20, 2) >>> model = SingleTaskVariationalGP(train_X) >>> mll = VariationalELBO( >>> model.likelihood, model.model, num_data=train_X.shape[-2] >>> ) """ def __init__( self, train_X: Tensor, train_Y: Optional[Tensor] = None, likelihood: Optional[Likelihood] = None, num_outputs: int = 1, learn_inducing_points: bool = True, covar_module: Optional[Kernel] = None, mean_module: Optional[Mean] = None, variational_distribution: Optional[_VariationalDistribution] = None, variational_strategy: Type[_VariationalStrategy] = VariationalStrategy, inducing_points: Optional[Union[Tensor, int]] = None, outcome_transform: Optional[OutcomeTransform] = None, input_transform: Optional[InputTransform] = None, inducing_point_allocator: Optional[InducingPointAllocator] = None, ) -> None: r""" Args: train_X: Training inputs (due to the ability of the SVGP to sub-sample this does not have to be all of the training inputs). train_Y: Training targets (optional). likelihood: Instance of a GPyTorch likelihood. If omitted, uses a either a `GaussianLikelihood` (if `num_outputs=1`) or a `MultitaskGaussianLikelihood`(if `num_outputs>1`). num_outputs: Number of output responses per input (default: 1). covar_module: Kernel function. If omitted, uses a `MaternKernel`. mean_module: Mean of GP model. If omitted, uses a `ConstantMean`. variational_distribution: Type of variational distribution to use (default: CholeskyVariationalDistribution), the properties of the variational distribution will encourage scalability or ease of optimization. variational_strategy: Type of variational strategy to use (default: VariationalStrategy). The default setting uses "whitening" of the variational distribution to make training easier. inducing_points: The number or specific locations of the inducing points. inducing_point_allocator: The `InducingPointAllocator` used to initialize the inducing point locations. If omitted, uses `GreedyVarianceReduction`. """ with torch.no_grad(): transformed_X = self.transform_inputs( X=train_X, input_transform=input_transform ) if train_Y is not None: if outcome_transform is not None: train_Y, _ = outcome_transform(train_Y) self._validate_tensor_args(X=transformed_X, Y=train_Y) validate_input_scaling(train_X=transformed_X, train_Y=train_Y) if train_Y.shape[-1] != num_outputs: num_outputs = train_Y.shape[-1] self._num_outputs = num_outputs self._input_batch_shape = train_X.shape[:-2] aug_batch_shape = copy.deepcopy(self._input_batch_shape) if num_outputs > 1: aug_batch_shape += torch.Size([num_outputs]) self._aug_batch_shape = aug_batch_shape if likelihood is None: if num_outputs == 1: noise_prior = GammaPrior(1.1, 0.05) noise_prior_mode = (noise_prior.concentration - 1) / noise_prior.rate likelihood = GaussianLikelihood( noise_prior=noise_prior, batch_shape=self._aug_batch_shape, noise_constraint=GreaterThan( MIN_INFERRED_NOISE_LEVEL, transform=None, initial_value=noise_prior_mode, ), ) else: likelihood = MultitaskGaussianLikelihood(num_tasks=num_outputs) else: self._is_custom_likelihood = True if learn_inducing_points and (inducing_point_allocator is not None): warnings.warn( "After all the effort of specifying an inducing point allocator, " "you probably want to stop the inducing point locations " "being further optimized during the model fit. If so " "then set `learn_inducing_points` to False.", UserWarning, ) if inducing_point_allocator is None: inducing_point_allocator = GreedyVarianceReduction() self._inducing_point_allocator = inducing_point_allocator model = _SingleTaskVariationalGP( train_X=transformed_X, train_Y=train_Y, num_outputs=num_outputs, learn_inducing_points=learn_inducing_points, covar_module=covar_module, mean_module=mean_module, variational_distribution=variational_distribution, variational_strategy=variational_strategy, inducing_points=inducing_points, inducing_point_allocator=self._inducing_point_allocator, ) super().__init__(model=model, likelihood=likelihood, num_outputs=num_outputs) if outcome_transform is not None: self.outcome_transform = outcome_transform if input_transform is not None: self.input_transform = input_transform # for model fitting utilities # TODO: make this a flag? self.model.train_inputs = [transformed_X] if train_Y is not None: self.model.train_targets = train_Y.squeeze(-1) self.to(train_X)
[docs] def init_inducing_points( self, inputs: Tensor, ) -> Tensor: r""" Reinitialize the inducing point locations in-place with the current kernel applied to `inputs` through the model's inducing point allocation strategy. The variational distribution and variational strategy caches are reset. Args: inputs: (\*batch_shape, n, d)-dim input data tensor. Returns: (\*batch_shape, m, d)-dim tensor of selected inducing point locations. """ var_strat = self.model.variational_strategy clear_cache_hook(var_strat) if hasattr(var_strat, "base_variational_strategy"): var_strat = var_strat.base_variational_strategy clear_cache_hook(var_strat) with torch.no_grad(): num_inducing = var_strat.inducing_points.size(-2) inducing_points = self._inducing_point_allocator.allocate_inducing_points( inputs=inputs, covar_module=self.model.covar_module, num_inducing=num_inducing, input_batch_shape=self._input_batch_shape, ) var_strat.inducing_points.copy_(inducing_points) var_strat.variational_params_initialized.fill_(0) return inducing_points