Source code for botorch.optim.numpy_converter

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
A converter that simplifies using numpy-based optimizers with generic torch
`nn.Module` classes. This enables using a `scipy.optim.minimize` optimizer
for optimizing module parameters.
"""

from __future__ import annotations

from collections import OrderedDict
from math import inf
from numbers import Number
from re import Pattern
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    NamedTuple,
    Optional,
    Set,
    Tuple,
    Union,
)

import numpy as np
import torch
from torch.nn import Module, Parameter

ParameterBounds = Dict[str, Tuple[Optional[float], Optional[float]]]


[docs]class TorchAttr(NamedTuple): shape: torch.Size dtype: torch.dtype device: torch.device
[docs]def create_name_filter( patterns: Iterator[Union[Pattern, str]] ) -> Callable[[Union[str, Tuple[str, Any, ...]]], bool]: r"""Returns a binary function that filters strings (or iterables whose first element is a string) according to a bank of excluded patterns. Typically, used in conjunction with generators such as `module.named_parameters()`. Args: patterns: A collection of regular expressions or strings that define the set of names to be excluded. Returns: A binary function indicating whether or not an item should be filtered. """ names = set() _patterns = set() for pattern in patterns: if isinstance(pattern, str): names.add(pattern) elif isinstance(pattern, Pattern): _patterns.add(pattern) else: raise TypeError def name_filter(item: Union[str, Tuple[str, Any, ...]]) -> bool: name = item if isinstance(item, str) else next(iter(item)) if name in names: return False for pattern in _patterns: if pattern.search(name): return False return True return name_filter
[docs]def get_parameters_and_bounds( module: Module, name_filter: Optional[Callable[[str], bool]] = None, requires_grad: Optional[bool] = None, default_bounds: Tuple[float, float] = (-float("inf"), float("inf")), ) -> Tuple[Dict[str, Parameter], Dict[str, ParameterBounds]]: r"""Helper method for extracting parameters and feasible ranges thereof. Args: module: The target module from which parameters are to be extracted. name_filter: Optional Boolean function used to filter parameters by name. requires_grad: Optional Boolean used to filter parameters based on whether or not their require_grad attribute matches the user provided value. default_bounds: Default lower and upper bounds for constrained parameters with `None` typed bounds. Returns: 0: Dictionary mapping names to Parameters. 1: Dictionary mapping names of constrained parameters to ParameterBounds. """ if hasattr(module, "named_parameters_and_constraints"): bounds = {} params = {} for name, param, constraint in module.named_parameters_and_constraints(): if (requires_grad is None or (param.requires_grad == requires_grad)) and ( name_filter is None or name_filter(name) ): params[name] = param if constraint is None: continue bounds[name] = tuple( default if bound is None else constraint.inverse_transform(bound) for (bound, default) in zip(constraint, default_bounds) ) else: bounds = {} params = { name: param for name, param in module.named_parameters() if name_filter is None or name_filter(name) } return params, bounds
[docs]def module_to_array( module: Module, bounds: Optional[ParameterBounds] = None, exclude: Optional[Set[str]] = None, ) -> Tuple[np.ndarray, Dict[str, TorchAttr], Optional[np.ndarray]]: r"""Extract named parameters from a module into a numpy array. Only extracts parameters with requires_grad, since it is meant for optimizing. Args: module: A module with parameters. May specify parameter constraints in a `named_parameters_and_constraints` method. bounds: A ParameterBounds dictionary mapping parameter names to tuples of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. exclude: A list of parameter names that are to be excluded from extraction. Returns: 3-element tuple containing - The parameter values as a numpy array. - An ordered dictionary with the name and tensor attributes of each parameter. - A `2 x n_params` numpy array with lower and upper bounds if at least one constraint is finite, and None otherwise. Example: >>> mll = ExactMarginalLogLikelihood(model.likelihood, model) >>> parameter_array, property_dict, bounds_out = module_to_array(mll) """ param_dict, bounds_dict = get_parameters_and_bounds( module=module, name_filter=None if exclude is None else create_name_filter(exclude), requires_grad=True, ) if bounds is not None: bounds_dict.update(bounds) # Record tensor metadata and read parameter values to the tape param_tape: List[Number] = [] property_dict = OrderedDict() with torch.no_grad(): for name, param in param_dict.items(): property_dict[name] = TorchAttr(param.shape, param.dtype, param.device) param_tape.extend(param.view(-1).cpu().double().tolist()) # Extract lower and upper bounds start = 0 bounds_np = None params_np = np.asarray(param_tape) for name, param in param_dict.items(): numel = param.numel() if name in bounds_dict: for row, bound in enumerate(bounds_dict[name]): if bound is None: continue if torch.is_tensor(bound): if (bound == (2 * row - 1) * inf).all(): continue bound = bound.detach().cpu() elif bound == (2 * row - 1) * inf: continue if bounds_np is None: bounds_np = np.full((2, len(params_np)), ((-inf,), (inf,))) bounds_np[row, start : start + numel] = bound start += numel return params_np, property_dict, bounds_np
[docs]def set_params_with_array( module: Module, x: np.ndarray, property_dict: Dict[str, TorchAttr] ) -> Module: r"""Set module parameters with values from numpy array. Args: module: Module with parameters to be set x: Numpy array with parameter values property_dict: Dictionary of parameter names and torch attributes as returned by module_to_array. Returns: Module: module with parameters updated in-place. Example: >>> mll = ExactMarginalLogLikelihood(model.likelihood, model) >>> parameter_array, property_dict, bounds_out = module_to_array(mll) >>> parameter_array += 0.1 # perturb parameters (for example only) >>> mll = set_params_with_array(mll, parameter_array, property_dict) """ param_dict = OrderedDict(module.named_parameters()) start_idx = 0 for p_name, attrs in property_dict.items(): # Construct the new tensor if len(attrs.shape) == 0: # deal with scalar tensors end_idx = start_idx + 1 new_data = torch.tensor( x[start_idx], dtype=attrs.dtype, device=attrs.device ) else: end_idx = start_idx + np.prod(attrs.shape) new_data = torch.tensor( x[start_idx:end_idx], dtype=attrs.dtype, device=attrs.device ).view(*attrs.shape) start_idx = end_idx # Update corresponding parameter in-place. Disable autograd to update. param_dict[p_name].requires_grad_(False) param_dict[p_name].copy_(new_data) param_dict[p_name].requires_grad_(True) return module