botorch.sampling¶
Monte-Carlo Samplers¶
Sampler modules to be used with MC-evaluated acquisition functions.
- class botorch.sampling.samplers.IIDNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, batch_range=(0, -2))[source]¶
Bases:
MCSampler
Sampler for MC base samples using iid N(0,1) samples.
Example
>>> sampler = IIDNormalSampler(1000, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior)
Sampler for MC base samples using iid N(0,1) samples.
- Parameters:
num_samples (int) – The number of samples to use.
resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms).
seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed.
collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
batch_range (Tuple[int, int]) – The range of t-batch dimensions in the base_sample_shape used by collapse_batch_dims. The t-batch dims are batch_range[0]:batch_range[1]. By default, this is (0, -2), for the case where the non-batch dimensions are -2 (q) and -1 (d) and all dims in the front are t-batch dims.
- training: bool¶
- class botorch.sampling.samplers.SobolQMCNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, batch_range=(0, -2))[source]¶
Bases:
MCSampler
Sampler for quasi-MC base samples using Sobol sequences.
Example
>>> sampler = SobolQMCNormalSampler(1024, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior)
Sampler for quasi-MC base samples using Sobol sequences.
- Parameters:
num_samples (int) – The number of samples to use. As a best practice, use powers of 2.
resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms).
seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed.
collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
batch_range (Tuple[int, int]) – The range of t-batch dimensions in the base_sample_shape used by collapse_batch_dims. The t-batch dims are batch_range[0]:batch_range[1]. By default, this is (0, -2), for the case where the non-batch dimensions are -2 (q) and -1 (d) and all dims in the front are t-batch dims.
- training: bool¶
Pairwise Monte-Carlo Samplers¶
- class botorch.sampling.pairwise_samplers.PairwiseMCSampler(max_num_comparisons=None, seed=None)[source]¶
Bases:
MCSampler
Abstract class for Pairwise MC Sampler.
This sampler will sample pairwise comparisons. It is to be used together with PairwiseGP and BoTorch acquisition functions (e.g., qKnowledgeGradient)
- Parameters:
max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons
seed (int) – The seed for np.random.seed. If omitted, use a random seed. May be overwritten by sibling classes or subclasses.
- forward(posterior)[source]¶
Draws MC samples from the posterior and make comparisons
- Parameters:
posterior (Posterior) – The Posterior to sample from. The returned samples are expected to have output dimension of 1.
- Returns:
Posterior sample pairwise comparisons.
- Return type:
Tensor
- training: bool¶
- class botorch.sampling.pairwise_samplers.PairwiseIIDNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, max_num_comparisons=None)[source]¶
Bases:
PairwiseMCSampler
,IIDNormalSampler
- Parameters:
num_samples (int) – The number of samples to use.
resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms).
seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed.
collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons.
- training: bool¶
- class botorch.sampling.pairwise_samplers.PairwiseSobolQMCNormalSampler(num_samples, resample=False, seed=None, collapse_batch_dims=True, max_num_comparisons=None)[source]¶
Bases:
PairwiseMCSampler
,SobolQMCNormalSampler
- Parameters:
num_samples (int) – The number of samples to use.
resample (bool) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms).
seed (Optional[int]) – The seed for the RNG. If omitted, use a random seed.
collapse_batch_dims (bool) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
max_num_comparisons (int) – Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons.
- training: bool¶
QMC Base Functionality¶
Quasi Monte-Carlo sampling from Normal distributions.
References:
- class botorch.sampling.qmc.NormalQMCEngine(d, seed=None, inv_transform=False)[source]¶
Bases:
object
Engine for qMC sampling from a Multivariate Normal N(0, I_d).
By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True.
Example
>>> engine = NormalQMCEngine(3) >>> samples = engine.draw(16)
Engine for drawing qMC samples from a multivariate normal N(0, I_d).
- Parameters:
d (int) – The dimension of the samples.
seed (Optional[int]) – The seed with which to seed the random number generator of the underlying SobolEngine.
inv_transform (bool) – If True, use inverse transform instead of Box-Muller.
- draw(n=1, out=None, dtype=torch.float32)[source]¶
Draw n qMC samples from the standard Normal.
- Parameters:
n (int) – The number of samples to draw. As a best practice, use powers of 2.
out (Optional[Tensor]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None.
dtype (dtype) – The desired torch data type (ignored if out is provided).
- Returns:
A n x d tensor of samples if out=None and None otherwise.
- Return type:
Optional[Tensor]
- class botorch.sampling.qmc.MultivariateNormalQMCEngine(mean, cov, seed=None, inv_transform=False)[source]¶
Bases:
object
Engine for qMC sampling from a multivariate Normal N(mu, Sigma).
By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True.
Example
>>> mean = torch.tensor([1.0, 2.0]) >>> cov = torch.tensor([[1.0, 0.25], [0.25, 2.0]]) >>> engine = MultivariateNormalQMCEngine(mean, cov) >>> samples = engine.draw(16)
Engine for qMC sampling from a multivariate Normal N(mu, Sigma).
- Parameters:
mean (Tensor) – The mean vector.
cov (Tensor) – The covariance matrix.
seed (Optional[int]) – The seed with which to seed the random number generator of the underlying SobolEngine.
inv_transform (bool) – If True, use inverse transform instead of Box-Muller.
- draw(n=1, out=None)[source]¶
Draw n qMC samples from the multivariate Normal.
- Parameters:
n (int) – The number of samples to draw. As a best practice, use powers of 2.
out (Optional[Tensor]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None.
- Returns:
A n x d tensor of samples if out=None and None otherwise.
- Return type:
Optional[Tensor]