Source code for botorch.utils.objective
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Helpers for handling objectives.
"""
from __future__ import annotations
from typing import Callable, List, Optional
import torch
from torch import Tensor
[docs]def apply_constraints_nonnegative_soft(
obj: Tensor,
constraints: List[Callable[[Tensor], Tensor]],
samples: Tensor,
eta: float,
) -> Tensor:
r"""Applies constraints to a non-negative objective.
This function uses a sigmoid approximation to an indicator function for
each constraint.
Args:
obj: A `n_samples x b x q (x m')`-dim Tensor of objective values.
constraints: A list of callables, each mapping a Tensor of size `b x q x m`
to a Tensor of size `b x q`, where negative values imply feasibility.
This callable must support broadcasting. Only relevant for multi-
output models (`m` > 1).
samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior.
eta: The temperature parameter for the sigmoid function.
Returns:
A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives.
"""
obj = obj.clamp_min(0) # Enforce non-negativity with constraints
for constraint in constraints:
constraint_eval = soft_eval_constraint(constraint(samples), eta=eta)
if obj.dim() == samples.dim():
# Need to unsqueeze to accommodate the outcome dimension.
constraint_eval = constraint_eval.unsqueeze(-1)
obj = obj.mul(constraint_eval)
return obj
[docs]def soft_eval_constraint(lhs: Tensor, eta: float = 1e-3) -> Tensor:
r"""Element-wise evaluation of a constraint in a 'soft' fashion
`value(x) = 1 / (1 + exp(x / eta))`
Args:
lhs: The left hand side of the constraint `lhs <= 0`.
eta: The temperature parameter of the softmax function. As eta
grows larger, this approximates the Heaviside step function.
Returns:
Element-wise 'soft' feasibility indicator of the same shape as `lhs`.
For each element `x`, `value(x) -> 0` as `x` becomes positive, and
`value(x) -> 1` as x becomes negative.
"""
if eta <= 0:
raise ValueError("eta must be positive")
return torch.sigmoid(-lhs / eta)
[docs]def apply_constraints(
obj: Tensor,
constraints: List[Callable[[Tensor], Tensor]],
samples: Tensor,
infeasible_cost: float,
eta: float = 1e-3,
) -> Tensor:
r"""Apply constraints using an infeasible_cost `M` for negative objectives.
This allows feasibility-weighting an objective for the case where the
objective can be negative by using the following strategy:
(1) Add `M` to make obj non-negative;
(2) Apply constraints using the sigmoid approximation;
(3) Shift by `-M`.
Args:
obj: A `n_samples x b x q (x m')`-dim Tensor of objective values.
constraints: A list of callables, each mapping a Tensor of size `b x q x m`
to a Tensor of size `b x q`, where negative values imply feasibility.
This callable must support broadcasting. Only relevant for multi-
output models (`m` > 1).
samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior.
infeasible_cost: The infeasible value.
eta: The temperature parameter of the sigmoid function.
Returns:
A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives.
"""
# obj has dimensions n_samples x b x q (x m')
obj = obj.add(infeasible_cost) # now it is nonnegative
obj = apply_constraints_nonnegative_soft(
obj=obj, constraints=constraints, samples=samples, eta=eta
)
return obj.add(-infeasible_cost)