#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Utilities for model fitting.
"""
from __future__ import annotations
import logging
import warnings
from copy import deepcopy
from typing import Any, Callable
from botorch.exceptions.errors import UnsupportedError
from botorch.exceptions.warnings import BotorchWarning, OptimizationWarning
from botorch.models.converter import batched_to_model_list, model_list_to_batched
from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP
from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel
from botorch.optim.fit import fit_gpytorch_scipy
from botorch.optim.utils import sample_all_priors
from botorch.settings import debug
from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood
from gpytorch.mlls.sum_marginal_log_likelihood import SumMarginalLogLikelihood
from linear_operator.utils.errors import NotPSDError
from pyro.infer.mcmc import MCMC, NUTS
FAILED_CONVERSION_MSG = (
"Failed to convert ModelList to batched model. "
"Performing joint instead of sequential fitting."
)
[docs]def fit_gpytorch_model(
mll: MarginalLogLikelihood, optimizer: Callable = fit_gpytorch_scipy, **kwargs: Any
) -> MarginalLogLikelihood:
r"""Fit hyperparameters of a GPyTorch model.
On optimizer failures, a new initial condition is sampled from the
hyperparameter priors and optimization is retried. The maximum number of
retries can be passed in as a `max_retries` kwarg (default is 5).
Optimizer functions are in botorch.optim.fit.
Args:
mll: MarginalLogLikelihood to be maximized.
optimizer: The optimizer function.
kwargs: Arguments passed along to the optimizer function, including
`max_retries` and `sequential` (controls the fitting of `ModelListGP`
and `BatchedMultiOutputGPyTorchModel` models) or `approx_mll`
(whether to use gpytorch's approximate MLL computation).
Returns:
MarginalLogLikelihood with optimized parameters.
Example:
>>> gp = SingleTaskGP(train_X, train_Y)
>>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp)
>>> fit_gpytorch_model(mll)
"""
sequential = kwargs.pop("sequential", True)
max_retries = kwargs.pop("max_retries", 5)
if isinstance(mll, SumMarginalLogLikelihood) and sequential:
for mll_ in mll.mlls:
fit_gpytorch_model(
mll=mll_, optimizer=optimizer, max_retries=max_retries, **kwargs
)
return mll
elif (
isinstance(mll.model, BatchedMultiOutputGPyTorchModel)
and mll.model._num_outputs > 1
and sequential
):
tf = None
try: # check if backwards-conversion is possible
# remove the outcome transform since the training targets are already
# transformed and the outcome transform cannot currently be split.
# TODO: support splitting outcome transforms.
if hasattr(mll.model, "outcome_transform"):
tf = mll.model.outcome_transform
mll.model.outcome_transform = None
model_list = batched_to_model_list(mll.model)
mll_ = SumMarginalLogLikelihood(model_list.likelihood, model_list)
fit_gpytorch_model(
mll=mll_,
optimizer=optimizer,
sequential=True,
max_retries=max_retries,
**kwargs,
)
model_ = model_list_to_batched(mll_.model)
mll.model.load_state_dict(model_.state_dict())
# setting the transformed inputs is necessary because gpytorch
# stores the raw training inputs on the ExactGP in the
# ExactGP.__init__ call. At evaluation time, the test inputs will
# already be in the transformed space if some transforms have
# transform_on_eval set to False. ExactGP.__call__ will
# concatenate the test points with the training inputs. Therefore,
# it is important to set the ExactGP's train_inputs to also be
# transformed data using all transforms (including the transforms
# with transform_on_train set to True).
mll.train()
if tf is not None:
mll.model.outcome_transform = tf
return mll.eval()
# NotImplementedError is omitted since it derives from RuntimeError
except (UnsupportedError, RuntimeError, AttributeError):
warnings.warn(FAILED_CONVERSION_MSG, BotorchWarning)
if tf is not None:
mll.model.outcome_transform = tf
return fit_gpytorch_model(
mll=mll, optimizer=optimizer, sequential=False, max_retries=max_retries
)
# retry with random samples from the priors upon failure
mll.train()
original_state_dict = deepcopy(mll.model.state_dict())
retry = 0
while retry < max_retries:
with warnings.catch_warnings(record=True) as ws, debug(True):
# Make sure we catch all OptimizationWarnings.
warnings.simplefilter("always", category=OptimizationWarning)
if retry > 0: # use normal initial conditions on first try
mll.model.load_state_dict(original_state_dict)
sample_all_priors(mll.model)
try:
mll, _ = optimizer(mll, track_iterations=False, **kwargs)
except NotPSDError:
retry += 1
logging.log(
logging.DEBUG,
f"Fitting failed on try {retry} due to a NotPSDError.",
)
continue
has_optwarning = False
for w in ws:
# Do not count reaching `maxiter` as an optimization failure.
if "ITERATIONS REACHED LIMIT" in str(w.message):
logging.log(
logging.DEBUG,
"Fitting ended early due to reaching the iteration limit.",
)
continue
has_optwarning |= issubclass(w.category, OptimizationWarning)
warnings.warn(w.message, w.category)
if not has_optwarning:
mll.eval()
return mll
retry += 1
logging.log(logging.DEBUG, f"Fitting failed on try {retry}.")
warnings.warn("Fitting failed on all retries.", RuntimeWarning)
return mll.eval()
[docs]def fit_fully_bayesian_model_nuts(
model: SaasFullyBayesianSingleTaskGP,
max_tree_depth: int = 6,
warmup_steps: int = 512,
num_samples: int = 256,
thinning: int = 16,
disable_progbar: bool = False,
) -> None:
r"""Fit a fully Bayesian model using the No-U-Turn-Sampler (NUTS)
Args:
model: SaasFullyBayesianSingleTaskGP to be fitted.
max_tree_depth: Maximum tree depth for NUTS
warmup_steps: The number of burn-in steps for NUTS.
num_samples: The number of MCMC samples. Note that with thinning,
num_samples / thinning samples are retained.
thinning: The amount of thinning. Every nth sample is retained.
disable_progbar: A boolean indicating whether to print the progress
bar and diagnostics during MCMC.
Example:
>>> gp = SaasFullyBayesianSingleTaskGP(train_X, train_Y)
>>> fit_fully_bayesian_model_nuts(gp)
"""
model.train()
# Do inference with NUTS
nuts = NUTS(
model.pyro_model.sample,
jit_compile=True,
full_mass=True,
ignore_jit_warnings=True,
max_tree_depth=max_tree_depth,
)
mcmc = MCMC(
nuts,
warmup_steps=warmup_steps,
num_samples=num_samples,
disable_progbar=disable_progbar,
)
mcmc.run()
# Get final MCMC samples from the Pyro model
mcmc_samples = model.pyro_model.postprocess_mcmc_samples(
mcmc_samples=mcmc.get_samples()
)
for k, v in mcmc_samples.items():
mcmc_samples[k] = v[::thinning]
# Load the MCMC samples back into the BoTorch model
model.load_mcmc_samples(mcmc_samples)
model.eval()