Source code for botorch.models.deterministic

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

r"""
Deterministic Models. Simple wrappers that allow the usage of deterministic
mappings via the BoTorch Model and Posterior APIs. Useful e.g. for defining
known cost functions for cost-aware acquisition utilities.
"""

from __future__ import annotations

from abc import ABC, abstractmethod
from typing import Any, Callable, List, Optional, Union

import torch
from botorch.acquisition.objective import PosteriorTransform
from botorch.exceptions.errors import UnsupportedError
from botorch.models.model import Model
from botorch.posteriors.deterministic import DeterministicPosterior
from torch import Tensor


[docs]class DeterministicModel(Model, ABC): r"""Abstract base class for deterministic models."""
[docs] @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Compute the (deterministic) model output at X. Args: X: A `batch_shape x n x d`-dim input tensor `X`. Returns: A `batch_shape x n x m`-dimensional output tensor (the outcome dimension `m` must be explicit if `m=1`). """ pass # pragma: no cover
@property def num_outputs(self) -> int: r"""The number of outputs of the model.""" return self._num_outputs
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, posterior_transform: Optional[PosteriorTransform] = None, **kwargs: Any ) -> DeterministicPosterior: r"""Compute the (deterministic) posterior at X. Args: X: A `batch_shape x n x d`-dim input tensor `X`. output_indices: A list of indices, corresponding to the outputs over which to compute the posterior. If omitted, computes the posterior over all model outputs. posterior_transform: An optional PosteriorTransform. Returns: A `DeterministicPosterior` object, representing `batch_shape` joint posteriors over `n` points and the outputs selected by `output_indices`. """ # Apply the input transforms in `eval` mode. self.eval() X = self.transform_inputs(X) # Note: we use a Tensor instance check so that `observation_noise = True` # just gets ignored. This avoids having to do a bunch of case distinctions # when using a ModelList. if isinstance(kwargs.get("observation_noise"), Tensor): # TODO: Consider returning an MVN here instead raise UnsupportedError( "Deterministic models do not support observation noise." ) values = self.forward(X) # NOTE: The `outcome_transform` `untransform`s the predictions rather than the # `posterior` (as is done in GP models). This is more general since it works # even if the transform doesn't support `untransform_posterior`. if hasattr(self, "outcome_transform"): values, _ = self.outcome_transform.untransform(values) if output_indices is not None: values = values[..., output_indices] posterior = DeterministicPosterior(values=values) if posterior_transform is not None: return posterior_transform(posterior) else: return posterior
[docs]class GenericDeterministicModel(DeterministicModel): r"""A generic deterministic model constructed from a callable.""" def __init__(self, f: Callable[[Tensor], Tensor], num_outputs: int = 1) -> None: r"""A generic deterministic model constructed from a callable. Args: f: A callable mapping a `batch_shape x n x d`-dim input tensor `X` to a `batch_shape x n x m`-dimensional output tensor (the outcome dimension `m` must be explicit, even if `m=1`). num_outputs: The number of outputs `m`. Example: >>> f = lambda x: x.sum(dim=-1, keep_dims=True) >>> model = GenericDeterministicModel(f) """ super().__init__() self._f = f self._num_outputs = num_outputs
[docs] def subset_output(self, idcs: List[int]) -> GenericDeterministicModel: r"""Subset the model along the output dimension. Args: idcs: The output indices to subset the model to. Returns: The current model, subset to the specified output indices. """ def f_subset(X: Tensor) -> Tensor: return self._f(X)[..., idcs] return self.__class__(f=f_subset, num_outputs=len(idcs))
[docs] def forward(self, X: Tensor) -> Tensor: r"""Compute the (deterministic) model output at X. Args: X: A `batch_shape x n x d`-dim input tensor `X`. Returns: A `batch_shape x n x m`-dimensional output tensor. """ return self._f(X)
[docs]class AffineDeterministicModel(DeterministicModel): r"""An affine deterministic model.""" def __init__(self, a: Tensor, b: Union[Tensor, float] = 0.01) -> None: r"""Affine deterministic model from weights and offset terms. A simple model of the form y[..., m] = b[m] + sum_{i=1}^d a[i, m] * X[..., i] Args: a: A `d x m`-dim tensor of linear weights, where `m` is the number of outputs (must be explicit if `m=1`) b: The affine (offset) term. Either a float (for single-output models or if the offset is shared), or a `m`-dim tensor (with different offset values for for the `m` different outputs). """ if not a.ndim == 2: raise ValueError("a must be two-dimensional") if not torch.is_tensor(b): b = torch.tensor([b]) if not b.ndim == 1: raise ValueError("b nust be one-dimensional") super().__init__() self.register_buffer("a", a) self.register_buffer("b", b.expand(a.size(-1))) self._num_outputs = a.size(-1)
[docs] def subset_output(self, idcs: List[int]) -> AffineDeterministicModel: r"""Subset the model along the output dimension. Args: idcs: The output indices to subset the model to. Returns: The current model, subset to the specified output indices. """ a_sub = self.a.detach()[..., idcs].clone() b_sub = self.b.detach()[..., idcs].clone() return self.__class__(a=a_sub, b=b_sub)
[docs] def forward(self, X: Tensor) -> Tensor: return self.b + torch.einsum("...d,dm", X, self.a)
[docs]class PosteriorMeanModel(DeterministicModel): def __init__(self, model: Model) -> None: r"""A deterministic model that always return the posterior mean. Args: model: The base model. """ super().__init__() self.model = model
[docs] def forward(self, X: Tensor) -> Tensor: return self.model.posterior(X).mean
[docs]class FixedSingleSampleModel(DeterministicModel): def __init__(self, model: Model, w: Optional[Tensor] = None) -> None: r"""A deterministic model defined by a single sample w. Given a base model f and a fixed sample w, the model always outputs y = f_mean(x) + f_stddev(x) * w We assume the outcomes are uncorrelated here. Args: model: The base model. w: A 1-d tensor with length model.num_outputs. If None, draw it from a standard normal distribution. """ super().__init__() self.model = model self._num_outputs = model.num_outputs self.w = torch.randn(model.num_outputs) # Check since Model doesn't guarantee a train_inputs attribute if hasattr(model, "train_inputs"): self.w = self.w.to(model.train_inputs[0])
[docs] def forward(self, X: Tensor) -> Tensor: post = self.model.posterior(X) return post.mean + post.variance.sqrt() * self.w