Source code for botorch.utils.torch

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# NOTE: To be removed once (if) https://github.com/pytorch/pytorch/pull/37385 lands

from __future__ import annotations

from collections import OrderedDict

import torch
from torch._six import container_abcs
from torch.nn import Module


[docs]class BufferDict(Module): r"""Holds buffers in a dictionary. BufferDict can be indexed like a regular Python dictionary, but buffers it contains are properly registered, and will be visible by all Module methods. :class:`~torch.nn.BufferDict` is an **ordered** dictionary that respects * the order of insertion, and * in :meth:`~torch.nn.BufferDict.update`, the order of the merged ``OrderedDict`` or another :class:`~torch.nn.BufferDict` (the argument to :meth:`~torch.nn.BufferDict.update`). Note that :meth:`~torch.nn.BufferDict.update` with other unordered mapping types (e.g., Python's plain ``dict``) does not preserve the order of the merged mapping. Arguments: buffers (iterable, optional): a mapping (dictionary) of (string : :class:`~torch.Tensor`) or an iterable of key-value pairs of type (string, :class:`~torch.Tensor`) Example:: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.buffers = nn.BufferDict({ 'left': torch.randn(5, 10), 'right': torch.randn(5, 10) }) def forward(self, x, choice): x = self.buffers[choice].mm(x) return x """ def __init__(self, buffers=None): super(BufferDict, self).__init__() if buffers is not None: self.update(buffers) def __getitem__(self, key): return self._buffers[key] def __setitem__(self, key, buffer): self.register_buffer(key, buffer) def __delitem__(self, key): del self._buffers[key] def __len__(self): return len(self._buffers) def __iter__(self): return iter(self._buffers.keys()) def __contains__(self, key): return key in self._buffers
[docs] def clear(self): """Remove all items from the BufferDict.""" self._buffers.clear()
[docs] def pop(self, key): r"""Remove key from the BufferDict and return its buffer. Arguments: key (string): key to pop from the BufferDict """ v = self[key] del self[key] return v
[docs] def keys(self): r"""Return an iterable of the BufferDict keys.""" return self._buffers.keys()
[docs] def items(self): r"""Return an iterable of the BufferDict key/value pairs.""" return self._buffers.items()
[docs] def values(self): r"""Return an iterable of the BufferDict values.""" return self._buffers.values()
[docs] def update(self, buffers): r"""Update the :class:`~torch.nn.BufferDict` with the key-value pairs from a mapping or an iterable, overwriting existing keys. .. note:: If :attr:`buffers` is an ``OrderedDict``, a :class:`~torch.nn.BufferDict`, or an iterable of key-value pairs, the order of new elements in it is preserved. Arguments: buffers (iterable): a mapping (dictionary) from string to :class:`~torch.Tensor`, or an iterable of key-value pairs of type (string, :class:`~torch.Tensor`) """ if not isinstance(buffers, container_abcs.Iterable): raise TypeError( "BuffersDict.update should be called with an " "iterable of key/value pairs, but got " + type(buffers).__name__ ) if isinstance(buffers, container_abcs.Mapping): if isinstance(buffers, (OrderedDict, BufferDict)): for key, buffer in buffers.items(): self[key] = buffer else: for key, buffer in sorted(buffers.items()): self[key] = buffer else: for j, p in enumerate(buffers): if not isinstance(p, container_abcs.Iterable): raise TypeError( "BufferDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(p).__name__ ) if not len(p) == 2: raise ValueError( "BufferDict update sequence element " "#" + str(j) + " has length " + str(len(p)) + "; 2 is required" ) self[p[0]] = p[1]
[docs] def extra_repr(self): child_lines = [] for k, p in self._buffers.items(): size_str = "x".join(str(size) for size in p.size()) device_str = "" if not p.is_cuda else " (GPU {})".format(p.get_device()) parastr = "Buffer containing: [{} of size {}{}]".format( torch.typename(p), size_str, device_str ) child_lines.append(" (" + k + "): " + parastr) tmpstr = "\n".join(child_lines) return tmpstr
def __call__(self, input): raise RuntimeError("BufferDict should not be called.")