Source code for botorch.utils.testing

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

import math
import warnings
from collections import OrderedDict
from typing import List, Optional, Tuple
from unittest import TestCase

import torch
from botorch import settings
from botorch.models.model import Model
from botorch.posteriors.gpytorch import GPyTorchPosterior
from botorch.posteriors.posterior import Posterior
from botorch.test_functions.base import BaseTestProblem
from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal
from gpytorch.lazy import AddedDiagLazyTensor, DiagLazyTensor
from torch import Tensor


EMPTY_SIZE = torch.Size()


[docs]class BotorchTestCase(TestCase): r"""Basic test case for Botorch. This 1. sets the default device to be `torch.device("cpu")` 2. ensures that no warnings are suppressed by default. """ device = torch.device("cpu")
[docs] def setUp(self): warnings.resetwarnings() settings.debug._set_state(False) warnings.simplefilter("always", append=True)
[docs]class BaseTestProblemBaseTestCase: functions: List[BaseTestProblem]
[docs] def test_forward(self): for dtype in (torch.float, torch.double): for batch_shape in (torch.Size(), torch.Size([2])): for f in self.functions: f.to(device=self.device, dtype=dtype) X = torch.rand(*batch_shape, f.dim, device=self.device, dtype=dtype) X = f.bounds[0] + X * (f.bounds[1] - f.bounds[0]) res = f(X) f(X, noise=False) self.assertEqual(res.dtype, dtype) self.assertEqual(res.device.type, self.device.type) tail_shape = torch.Size( [f.num_objectives] if f.num_objectives > 1 else [] ) self.assertEqual(res.shape, batch_shape + tail_shape)
[docs]class SyntheticTestFunctionBaseTestCase(BaseTestProblemBaseTestCase):
[docs] def test_optimal_value(self): for dtype in (torch.float, torch.double): for f in self.functions: f.to(device=self.device, dtype=dtype) try: optval = f.optimal_value optval_exp = -f._optimal_value if f.negate else f._optimal_value self.assertEqual(optval, optval_exp) except NotImplementedError: pass
[docs] def test_optimizer(self): for dtype in (torch.float, torch.double): for f in self.functions: f.to(device=self.device, dtype=dtype) try: Xopt = f.optimizers.clone().requires_grad_(True) except NotImplementedError: continue res = f(Xopt, noise=False) # if we have optimizers, we have the optimal value res_exp = torch.full_like(res, f.optimal_value) self.assertTrue(torch.allclose(res, res_exp, atol=1e-3, rtol=1e-3)) if f._check_grad_at_opt: grad = torch.autograd.grad([*res], Xopt)[0] self.assertLess(grad.abs().max().item(), 1e-3)
[docs]class MockPosterior(Posterior): r"""Mock object that implements dummy methods and feeds through specified outputs""" def __init__(self, mean=None, variance=None, samples=None): self._mean = mean self._variance = variance self._samples = samples @property def device(self) -> torch.device: for t in (self._mean, self._variance, self._samples): if torch.is_tensor(t): return t.device return torch.device("cpu") @property def dtype(self) -> torch.dtype: for t in (self._mean, self._variance, self._samples): if torch.is_tensor(t): return t.dtype return torch.float32 @property def event_shape(self) -> torch.Size: if self._samples is not None: return self._samples.shape if self._mean is not None: return self._mean.shape if self._variance is not None: return self._variance.shape return torch.Size() @property def mean(self): return self._mean @property def variance(self): return self._variance
[docs] def rsample( self, sample_shape: Optional[torch.Size] = None, base_samples: Optional[Tensor] = None, ) -> Tensor: """Mock sample by repeating self._samples. If base_samples is provided, do a shape check but return the same mock samples.""" if sample_shape is None: sample_shape = torch.Size() if sample_shape is not None and base_samples is not None: # check the base_samples shape is consistent with the sample_shape if base_samples.shape[: len(sample_shape)] != sample_shape: raise RuntimeError("sample_shape disagrees with base_samples.") return self._samples.expand(sample_shape + self._samples.shape)
[docs]class MockModel(Model): r"""Mock object that implements dummy methods and feeds through specified outputs""" def __init__(self, posterior: MockPosterior) -> None: super(Model, self).__init__() self._posterior = posterior
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: bool = False, ) -> MockPosterior: return self._posterior
@property def num_outputs(self) -> int: event_shape = self._posterior.event_shape return event_shape[-1] if len(event_shape) > 0 else 0
[docs] def state_dict(self) -> None: pass
[docs] def load_state_dict( self, state_dict: Optional[OrderedDict] = None, strict: bool = False ) -> None: pass
[docs]class MockAcquisitionFunction: r"""Mock acquisition function object that implements dummy methods.""" def __init__(self): self.model = None self.X_pending = None def __call__(self, X): return X[..., 0].max(dim=-1)[0]
[docs] def set_X_pending(self, X_pending: Optional[Tensor] = None): self.X_pending = X_pending
def _get_random_data( batch_shape: torch.Size, num_outputs: int, n: int = 10, **tkwargs ) -> Tuple[Tensor, Tensor]: r"""Generate random data for testing pursposes. Args: batch_shape: The batch shape of the data. num_outputs: The number of outputs. n: The number of data points. tkwargs: `device` and `dtype` tensor constructor kwargs. Returns: A tuple `(train_X, train_Y)` with randomly generated training data. """ rep_shape = batch_shape + torch.Size([1, 1]) train_x = torch.linspace(0, 0.95, n, **tkwargs).unsqueeze(-1) train_x = train_x + 0.05 * torch.rand(n, 1, **tkwargs).repeat(rep_shape) train_y = torch.sin(train_x * (2 * math.pi)) train_y = train_y + 0.2 * torch.randn(n, num_outputs, **tkwargs).repeat(rep_shape) return train_x, train_y def _get_test_posterior( batch_shape: torch.Size, q: int = 1, m: int = 1, interleaved: bool = True, lazy: bool = False, independent: bool = False, **tkwargs ) -> GPyTorchPosterior: r"""Generate a Posterior for testing purposes. Args: batch_shape: The batch shape of the data. q: The number of candidates m: The number of outputs. interleaved: A boolean indicating the format of the MultitaskMultivariateNormal lazy: A boolean indicating if the posterior should be lazy indepedent: A boolean indicating whether the outputs are independent tkwargs: `device` and `dtype` tensor constructor kwargs. """ if independent: mvns = [] for _ in range(m): mean = torch.rand(*batch_shape, q, **tkwargs) a = torch.rand(*batch_shape, q, q, **tkwargs) covar = a @ a.transpose(-1, -2) flat_diag = torch.rand(*batch_shape, q, **tkwargs) covar = covar + torch.diag_embed(flat_diag) mvns.append(MultivariateNormal(mean, covar)) mtmvn = MultitaskMultivariateNormal.from_independent_mvns(mvns) else: mean = torch.rand(*batch_shape, q, m, **tkwargs) a = torch.rand(*batch_shape, q * m, q * m, **tkwargs) covar = a @ a.transpose(-1, -2) flat_diag = torch.rand(*batch_shape, q * m, **tkwargs) if lazy: covar = AddedDiagLazyTensor(covar, DiagLazyTensor(flat_diag)) else: covar = covar + torch.diag_embed(flat_diag) mtmvn = MultitaskMultivariateNormal(mean, covar, interleaved=interleaved) return GPyTorchPosterior(mtmvn)