Source code for botorch.utils.torch
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# NOTE: To be removed once (if) https://github.com/pytorch/pytorch/pull/37385 lands
from __future__ import annotations
import collections
from collections import OrderedDict
import torch
from torch.nn import Module
[docs]
class BufferDict(Module):
r"""Holds buffers in a dictionary.
BufferDict can be indexed like a regular Python dictionary, but buffers it
contains are properly registered, and will be visible by all Module methods.
:class:`~torch.nn.BufferDict` is an **ordered** dictionary that respects
* the order of insertion, and
* in :meth:`~torch.nn.BufferDict.update`, the order of the merged ``OrderedDict``
or another :class:`~torch.nn.BufferDict` (the argument to
:meth:`~torch.nn.BufferDict.update`).
Note that :meth:`~torch.nn.BufferDict.update` with other unordered mapping
types (e.g., Python's plain ``dict``) does not preserve the order of the
merged mapping.
Args:
buffers (iterable, optional): a mapping (dictionary) of
(string : :class:`~torch.Tensor`) or an iterable of key-value pairs
of type (string, :class:`~torch.Tensor`)
Example::
class MyModule(nn.Module):
def __init__(self):
super(MyModule, self).__init__()
self.buffers = nn.BufferDict({
'left': torch.randn(5, 10),
'right': torch.randn(5, 10)
})
def forward(self, x, choice):
x = self.buffers[choice].mm(x)
return x
"""
def __init__(self, buffers=None):
r"""
Args:
buffers: A mapping (dictionary) from string to :class:`~torch.Tensor`, or
an iterable of key-value pairs of type (string, :class:`~torch.Tensor`).
"""
super(BufferDict, self).__init__()
if buffers is not None:
self.update(buffers)
def __getitem__(self, key):
return self._buffers[key]
def __setitem__(self, key, buffer):
self.register_buffer(key, buffer)
def __delitem__(self, key):
del self._buffers[key]
def __len__(self):
return len(self._buffers)
def __iter__(self):
return iter(self._buffers.keys())
def __contains__(self, key):
return key in self._buffers
[docs]
def clear(self):
"""Remove all items from the BufferDict."""
self._buffers.clear()
[docs]
def pop(self, key):
r"""Remove key from the BufferDict and return its buffer.
Args:
key (string): key to pop from the BufferDict
"""
v = self[key]
del self[key]
return v
[docs]
def keys(self):
r"""Return an iterable of the BufferDict keys."""
return self._buffers.keys()
[docs]
def items(self):
r"""Return an iterable of the BufferDict key/value pairs."""
return self._buffers.items()
[docs]
def values(self):
r"""Return an iterable of the BufferDict values."""
return self._buffers.values()
[docs]
def update(self, buffers):
r"""Update the :class:`~torch.nn.BufferDict` with the key-value pairs from a
mapping or an iterable, overwriting existing keys.
.. note::
If :attr:`buffers` is an ``OrderedDict``, a :class:`~torch.nn.BufferDict`,
or an iterable of key-value pairs, the order of new elements in it is
preserved.
Args:
buffers (iterable): a mapping (dictionary) from string to
:class:`~torch.Tensor`, or an iterable of
key-value pairs of type (string, :class:`~torch.Tensor`)
"""
if not isinstance(buffers, collections.abc.Iterable):
raise TypeError(
"BuffersDict.update should be called with an "
"iterable of key/value pairs, but got " + type(buffers).__name__
)
if isinstance(buffers, collections.abc.Mapping):
if isinstance(buffers, (OrderedDict, BufferDict)):
for key, buffer in buffers.items():
self[key] = buffer
else:
for key, buffer in sorted(buffers.items()):
self[key] = buffer
else:
for j, p in enumerate(buffers):
if not isinstance(p, collections.abc.Iterable):
raise TypeError(
"BufferDict update sequence element "
"#" + str(j) + " should be Iterable; is" + type(p).__name__
)
if not len(p) == 2:
raise ValueError(
"BufferDict update sequence element "
"#" + str(j) + " has length " + str(len(p)) + "; 2 is required"
)
self[p[0]] = p[1]
def __call__(self, input):
raise RuntimeError("BufferDict should not be called.")