Source code for botorch.sampling.index_sampler
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
r"""
Sampler to be used with `EnsemblePosteriors` to enable
deterministic optimization of acquisition functions with ensemble models.
"""
from __future__ import annotations
import torch
from botorch.posteriors.ensemble import EnsemblePosterior
from botorch.sampling.base import MCSampler
from torch import Tensor
[docs]
class IndexSampler(MCSampler):
r"""A sampler that calls `posterior.rsample_from_base_samples` to
generate the samples via index base samples."""
[docs]
def forward(self, posterior: EnsemblePosterior) -> Tensor:
r"""Draws MC samples from the posterior.
Args:
posterior: The ensemble posterior to sample from.
Returns:
The samples drawn from the posterior.
"""
self._construct_base_samples(posterior=posterior)
samples = posterior.rsample_from_base_samples(
sample_shape=self.sample_shape, base_samples=self.base_samples
)
return samples
def _construct_base_samples(self, posterior: EnsemblePosterior) -> None:
r"""Constructs base samples as indices to sample with them from
the Posterior.
Args:
posterior: The ensemble posterior to construct the base samples
for.
"""
if self.base_samples is None or self.base_samples.shape != self.sample_shape:
with torch.random.fork_rng():
torch.manual_seed(self.seed)
base_samples = torch.multinomial(
posterior.weights,
num_samples=self.sample_shape.numel(),
replacement=True,
).reshape(self.sample_shape)
self.register_buffer("base_samples", base_samples)
if self.base_samples.device != posterior.device:
self.to(device=posterior.device) # pragma: nocover
def _update_base_samples(
self, posterior: EnsemblePosterior, base_sampler: IndexSampler
) -> None:
r"""Null operation just needed for compatibility with
`CachedCholeskyAcquisitionFunction`."""
pass