botorch.sampling¶
botorch.sampling.qmc¶
Quasi Monte-Carlo sampling from Normal distributions.
References:
[Pages2018numprob] | (1, 2) G. Pages. Numerical Probability: An Introduction with Applications to Finance. Universitext. Springer International Publishing, 2018. |
NormalQMCEngine¶
-
class
botorch.sampling.qmc.
NormalQMCEngine
(d, seed=None, inv_transform=False)[source]¶ Engine for qMC sampling from a Multivariate Normal N(0, I_d).
By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True.
Example
>>> engine = NormalQMCEngine(3) >>> samples = engine.draw(10)
Engine for drawing qMC samples from a multivariate normal N(0, I_d).
Parameters: - d (
int
) – The dimension of the samples. - seed (
Optional
[int
]) – The seed with which to seed the random number generator of the underlying SobolEngine. - inv_transform (
bool
) – If True, use inverse transform instead of Box-Muller.
-
draw
(n=1, out=None, dtype=torch.float32)[source]¶ Draw n qMC samples from the standard Normal.
Parameters: - n (
int
) – The number of samples to draw. - out (
Optional
[Tensor
]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None. - dtype (
dtype
) – The desired torch data type (ignored if out is provided).
Return type: Optional
[Tensor
]Returns: A n x d tensor of samples if out=None and None otherwise.
- n (
- d (
MultivariateNormalQMCEngine¶
-
class
botorch.sampling.qmc.
MultivariateNormalQMCEngine
(mean, cov, seed=None, inv_transform=False)[source]¶ Engine for qMC sampling from a multivariate Normal N(mu, Sigma).
By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]. To use the inverse transform instead, set inv_transform=True.
Example
>>> mean = torch.tensor([1.0, 2.0]) >>> cov = torch.tensor([[1.0, 0.25], [0.25, 2.0]]) >>> engine = MultivariateNormalQMCEngine(mean, cov) >>> samples = engine.draw(10)
Engine for qMC sampling from a multivariate Normal N(mu, Sigma).
Parameters: - mean (
Tensor
) – The mean vector. - cov (
Tensor
) – The covariance matrix. - seed (
Optional
[int
]) – The seed with which to seed the random number generator of the underlying SobolEngine. - inv_transform (
bool
) – If True, use inverse transform instead of Box-Muller.
-
draw
(n=1, out=None)[source]¶ Draw n qMC samples from the multivariate Normal.
Parameters: - n (
int
) – The number of samples to draw. - out (
Optional
[Tensor
]) – An option output tensor. If provided, draws are put into this tensor, and the function returns None.
Return type: Optional
[Tensor
]Returns: A n x d tensor of samples if out=None and None otherwise.
- n (
- mean (
botorch.sampling.samplers¶
Sampler modules to be used with MC-evaluated acquisition functions.
MCSampler¶
-
class
botorch.sampling.samplers.
MCSampler
[source]¶ Abstract base class for Samplers.
Subclasses must implement the _construct_base_samples method.
-
sample_shape
¶ The shape of each sample.
-
resample
¶ If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms).
-
collapse_batch_dims
¶ If True, collapse the t-batch dimensions of the produced samples to size 1. This is useful for preventing sampling variance across t-batches.
Example
This method is usually not called directly, but via the sampler’s __call__ method: >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior)
-
forward
(posterior)[source]¶ Draws MC samples from the posterior.
Parameters: posterior ( Posterior
) – The Posterior to sample from.Return type: Tensor
Returns: The samples drawn from the posterior.
-
sample_shape
The shape of a single sample
Return type: Size
-
IIDNormalSampler¶
-
class
botorch.sampling.samplers.
IIDNormalSampler
(num_samples, resample=False, seed=None, collapse_batch_dims=True)[source]¶ Sampler for MC base samples using iid N(0,1) samples.
Example
>>> sampler = IIDNormalSampler(1000, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior)
Sampler for MC base samples using iid N(0,1) samples.
Parameters: - num_samples (
int
) – The number of samples to use. - resample (
bool
) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). - seed (
Optional
[int
]) – The seed for the RNG. If omitted, use a random seed. - collapse_batch_dims (
bool
) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
- num_samples (
SobolQMCNormalSampler¶
-
class
botorch.sampling.samplers.
SobolQMCNormalSampler
(num_samples, resample=False, seed=None, collapse_batch_dims=True)[source]¶ Sampler for quasi-MC base samples using Sobol sequences.
Example
>>> sampler = SobolQMCNormalSampler(1000, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior)
Sampler for quasi-MC base samples using Sobol sequences.
Parameters: - num_samples (
int
) – The number of samples to use. - resample (
bool
) – If True, re-draw samples in each forward evaluation - this results in stochastic acquisition functions (and thus should not be used with deterministic optimization algorithms). - seed (
Optional
[int
]) – The seed for the RNG. If omitted, use a random seed. - collapse_batch_dims (
bool
) – If True, collapse the t-batch dimensions to size 1. This is useful for preventing sampling variance across t-batches.
- num_samples (