Source code for botorch.posteriors.posterior
#! /usr/bin/env python3
r"""
Abstract base module for all botorch posteriors.
"""
from abc import ABC, abstractmethod, abstractproperty
from typing import Optional
import torch
from torch import Tensor
[docs]class Posterior(ABC):
r"""Abstract base class for botorch posteriors."""
@abstractproperty
def device(self) -> torch.device:
r"""The torch device of the posterior."""
pass # pragma: no cover
@abstractproperty
def dtype(self) -> torch.dtype:
r"""The torch dtype of the posterior."""
pass # pragma: no cover
@abstractproperty
def event_shape(self) -> torch.Size:
r"""The event shape (i.e. the shape of a single sample)."""
pass # pragma: no cover
@property
def mean(self) -> Tensor:
r"""The mean of the posterior as a `(b) x n x o`-dim Tensor."""
raise NotImplementedError(
f"Property `mean` not implemented for {self.__class__.__name__}"
)
@property
def variance(self) -> Tensor:
r"""The variance of the posterior as a `(b) x n x o`-dim Tensor."""
raise NotImplementedError(
f"Property `variance` not implemented for {self.__class__.__name__}"
)
[docs] @abstractmethod
def rsample(
self,
sample_shape: Optional[torch.Size] = None,
base_samples: Optional[Tensor] = None,
) -> Tensor:
r"""Sample from the posterior (with gradients).
Args:
sample_shape: A `torch.Size` object specifying the sample shape. To
draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
of `n` samples each, set to `torch.Size([b, n])`.
base_samples: An (optional) Tensor of `N(0, I)` base samples of
appropriate dimension, typically obtained from a `Sampler`.
This is used for deterministic optimization.
Returns:
A `sample_shape x event`-dim Tensor of samples from the posterior.
"""
pass # pragma: no cover
[docs] def sample(
self,
sample_shape: Optional[torch.Size] = None,
base_samples: Optional[Tensor] = None,
) -> Tensor:
r"""Sample from the posterior (without gradients).
This is a simple wrapper calling `rsample` using `with torch.no_grad()`.
Args:
sample_shape: A `torch.Size` object specifying the sample shape. To
draw `n` samples, set to `torch.Size([n])`. To draw `b` batches
of `n` samples each, set to `torch.Size([b, n])`.
base_samples: An (optional) Tensor of `N(0, I)` base samples of
appropriate dimension, typically obtained from a `Sampler` object.
This is used for deterministic optimization.
Returns:
A `sample_shape x event_shape`-dim Tensor of samples from the posterior.
"""
with torch.no_grad():
return self.rsample(sample_shape=sample_shape, base_samples=base_samples)