Source code for botorch.models.gpytorch

#! /usr/bin/env python3

r"""
Abstract model class for all GPyTorch-based botorch models.

To implement your own, simply inherit from both the provided classes and a
GPyTorch Model class such as an ExactGP.
"""

from abc import ABC, abstractproperty
from contextlib import ExitStack
from typing import Any, List, Optional

import torch
from gpytorch import settings
from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal
from gpytorch.lazy import lazify
from torch import Tensor

from ..posteriors.gpytorch import GPyTorchPosterior
from .model import Model
from .utils import _make_X_full, add_output_dim


[docs]class GPyTorchModel(Model, ABC): r"""Abstract base class for models based on GPyTorch models. The easiest way to use this is to subclass a model from a GPyTorch model class (e.g. an `ExactGP`) and this `GPyTorchModel`. See e.g. `SingleTaskGP`. """
[docs] def posterior( self, X: Tensor, observation_noise: bool = False, **kwargs: Any ) -> GPyTorchPosterior: r"""Computes the posterior over model outputs at the provided points. Args: X: A `(batch_shape) x q x d`-dim Tensor, where `d` is the dimension of the feature space and `q` is the number of points considered jointly. observation_noise: If True, add observation noise to the posterior. detach_test_caches: If True, detach GPyTorch test caches during computation of the posterior. Required for being able to compute derivatives with respect to training inputs at test time (used e.g. by qNoisyExpectedImprovement). Defaults to `True`. Returns: A `GPyTorchPosterior` object, representing a batch of `b` joint distributions over `q` points. Includes observation noise if `observation_noise=True`. """ self.eval() # make sure model is in eval mode detach_test_caches = kwargs.get("detach_test_caches", True) with ExitStack() as es: es.enter_context(settings.debug(False)) es.enter_context(settings.fast_pred_var()) es.enter_context(settings.detach_test_caches(detach_test_caches)) mvn = self(X) if observation_noise: # TODO: Allow passing in observation noise via kwarg mvn = self.likelihood(mvn, X) return GPyTorchPosterior(mvn=mvn)
[docs]class BatchedMultiOutputGPyTorchModel(GPyTorchModel): r"""Base class for batched multi-output GPyTorch models with independent outputs. This model should be used when the same training data is used for all outputs. Outputs are modeled independently by using a different batch for each output. """ _num_outputs: int _input_batch_shape: torch.Size _aug_batch_shape: torch.Size def _set_dimensions(self, train_X: Tensor, train_Y: Tensor) -> None: r"""Store the number of outputs and the batch shape. Args: train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training features. train_Y: A `n x (o)` or `batch_shape x n x (o)` (batch mode) tensor of training observations. """ self._num_outputs = train_Y.shape[-1] if train_Y.dim() == train_X.dim() else 1 self._input_batch_shape = train_X.shape[:-2] if self._num_outputs > 1: self._aug_batch_shape = ( torch.Size([self._num_outputs]) + self._input_batch_shape ) else: self._aug_batch_shape = self._input_batch_shape
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: bool = False, **kwargs: Any, ) -> GPyTorchPosterior: r"""Computes the posterior over model outputs at the provided points. Args: X: A `(batch_shape) x q x d`-dim Tensor, where `d` is the dimension of the feature space and `q` is the number of points considered jointly. output_indices: A list of indices, corresponding to the outputs over which to compute the posterior (if the model is multi-output). Can be used to speed up computation if only a subset of the model's outputs are required for optimization. If omitted, computes the posterior over all model outputs. observation_noise: If True, add observation noise to the posterior. detach_test_caches: If True, detach GPyTorch test caches during computation of the posterior. Required for being able to compute derivatives with respect to training inputs at test time (used e.g. by qNoisyExpectedImprovement). Defaults to `True`. Returns: A `GPyTorchPosterior` object, representing `batch_shape` joint distributions over `q` points and the outputs selected by `output_indices` each. Includes observation noise if `observation_noise=True`. """ self.eval() # make sure model is in eval mode detach_test_caches = kwargs.get("detach_test_caches", True) with ExitStack() as es: es.enter_context(settings.debug(False)) es.enter_context(settings.fast_pred_var()) es.enter_context(settings.detach_test_caches(detach_test_caches)) # insert a dimension for the output dimension if self._num_outputs > 1: X, output_dim_idx = add_output_dim( X=X, original_batch_shape=self._input_batch_shape ) mvn = self(X) mean_x = mvn.mean covar_x = mvn.covariance_matrix if self._num_outputs > 1: output_indices = output_indices or range(self._num_outputs) mvns = [ MultivariateNormal( mean_x.select(dim=output_dim_idx, index=t), lazify(covar_x.select(dim=output_dim_idx, index=t)), ) for t in output_indices ] mvn = MultitaskMultivariateNormal.from_independent_mvns(mvns=mvns) return GPyTorchPosterior(mvn=mvn)
[docs]class ModelListGPyTorchModel(GPyTorchModel, ABC): r"""Abstract base class for models based on multi-output GPyTorch models. This is meant to be used with a gpytorch ModelList wrapper for independent evaluation of submodels. """ @abstractproperty def num_outputs(self) -> int: r"""The number of outputs of the model.""" pass # pragma: no cover
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: bool = False, **kwargs: Any, ) -> GPyTorchPosterior: r"""Computes the posterior over model outputs at the provided points. Args: X: A `b x q x d`-dim Tensor, where `d` is the dimension of the feature space, `q` is the number of points considered jointly, and `b` is the batch dimension. output_indices: A list of indices, corresponding to the outputs over which to compute the posterior (if the model is multi-output). Can be used to speed up computation if only a subset of the model's outputs are required for optimization. If omitted, computes the posterior over all model outputs. observation_noise: If True, add observation noise to the posterior. detach_test_caches: If True, detach GPyTorch test caches during computation of the posterior. Required for being able to compute derivatives with respect to training inputs at test time (used e.g. by qNoisyExpectedImprovement). Returns: A `GPyTorchPosterior` object, representing `batch_shape` joint distributions over `q` points and the outputs selected by `output_indices` each. Includes measurement noise if `observation_noise=True`. """ detach_test_caches = kwargs.get("detach_test_caches", True) self.eval() # make sure model is in eval mode with ExitStack() as es: es.enter_context(settings.debug(False)) es.enter_context(settings.fast_pred_var()) es.enter_context(settings.detach_test_caches(detach_test_caches)) if output_indices is not None: mvns = [self.forward_i(i, X) for i in output_indices] if observation_noise: mvns = [ self.likelihood_i(i, mvn, X) for i, mvn in zip(output_indices, mvns) ] else: mvns = self(*[X for _ in range(self.num_outputs)]) if observation_noise: # TODO: Allow passing in observation noise via kwarg mvns = self.likelihood(*[(mvn, X) for mvn in mvns]) if len(mvns) == 1: return GPyTorchPosterior(mvn=mvns[0]) else: return GPyTorchPosterior( mvn=MultitaskMultivariateNormal.from_independent_mvns(mvns=mvns) )
[docs]class MultiTaskGPyTorchModel(GPyTorchModel, ABC): r"""Abstract base class for multi-task models baed on GPyTorch models. This class provides the `posterior` method to models that implement a "long-format" multi-task GP in the style of `MultiTaskGP`. """
[docs] def posterior( self, X: Tensor, output_indices: Optional[List[int]] = None, observation_noise: bool = False, **kwargs: Any, ) -> GPyTorchPosterior: r"""Computes the posterior over model outputs at the provided points. Args: X: A `q x d` or `batch_shape x q x d` (batch mode) tensor, where `d` is the dimension of the feature space (not including task indices) and `q` is the number of points considered jointly. output_indices: A list of indices, corresponding to the outputs over which to compute the posterior (if the model is multi-output). Can be used to speed up computation if only a subset of the model's outputs are required for optimization. If omitted, computes the posterior over all model outputs. observation_noise: If True, add observation noise to the posterior. detach_test_caches: If True, detach GPyTorch test caches during computation of the posterior. Required for being able to compute derivatives with respect to training inputs at test time (used e.g. by qNoisyExpectedImprovement). Returns: A `GPyTorchPosterior` object, representing `batch_shape` joint distributions over `q` points and the outputs selected by `output_indices`. Includes measurement noise if `observation_noise=True`. """ if output_indices is None: output_indices = self._output_tasks if any(i not in self._output_tasks for i in output_indices): raise ValueError("Too many output indices") # construct evaluation X X_full = _make_X_full(X=X, output_indices=output_indices, tf=self._task_feature) self.eval() # make sure model is in eval mode detach_test_caches = kwargs.get("detach_test_caches", True) with ExitStack() as es: es.enter_context(settings.debug(False)) es.enter_context(settings.fast_pred_var()) es.enter_context(settings.detach_test_caches(detach_test_caches)) mvn = self(X_full) if observation_noise: # TODO: Allow passing in observation noise via kwarg mvn = self.likelihood(mvn, X_full) # If single-output, return the posterior of a single-output model if len(output_indices) == 1: return GPyTorchPosterior(mvn=mvn) # Otherwise, make a MultitaskMultivariateNormal out of this mtmvn = MultitaskMultivariateNormal( mean=mvn.mean.view(*X.shape[:-1], len(output_indices)), covariance_matrix=mvn.lazy_covariance_matrix, interleaved=False, ) return GPyTorchPosterior(mvn=mtmvn)